Advances in Steel Structures (ICASS 2020)

Edited by

Siu-Lai Chan
Department of Civil and Environment Engineering, The Hong Kong Polytechnic University

Zhi-Xiang Yu
School of Civil Engineering, Southwest Jiaotong University

Published by
Hong Kong Institute of Steel Construction Limited
Table of Contents

Preface XI

Volume I

Keynote Lectures

SEISMIC DESIGN AND ANALYSIS OF STEEL PANEL DAMPERS FOR STEEL FRAME BUILDINGS
K.C. Tsai* and C.H. Hsu 2

THE CONTINUOUS STRENGTH METHOD - REVIEW AND OUTLOOK
L. Gardner*, X. Yun and F. Walport 15

Assembled Structure

A NEW TYPE OF ASSEMBLED THERMAL INSULATION DECORATIVE WALL SYSTEM FIRE RESISTANCE STUDY
C.L. Wang*, S.R. Jiang, B.C. Li and S. Li 28

RESEARCH ON SEISMIC BEHAVIOR OF ASSEMBLED BEAM-COLUMN JOINTS WITH C-SHAPED CANTILEVER SECTION

EXPERIMENTAL STUDY AND NUMERICAL ANALYSIS ON SEISMIC BEHAVIOR OF ASSEMBLED BEAM-COLUMN JOINTS WITH C-SHAPED CANTILEVER SECTION

RESEARCH ON DYNAMIC LOAD CARRYING CAPACITY OF ASSEMBLED INTERNAL STIFFENING WIND TURBINE TOWER BASED ON MULTI-SCALE MODELING
F.W. Wang*, K.M. Zhou and S.T. Ke 82

Bridge

SOUND RADIATION OF ORTHOTROPIC STEEL DECKS SUBJECTED TO MOVING VEHICLE LOADS
Y.C. You and X. Zhang* 93

POWER FLOW ANALYSIS OF BRIDGE U-RIB STIFFENED PLATES BASED ON THE CONCEPT OF STRUCTURAL INTENSITY
D.R. Kong and X. Zhang* 102
VIBRO-ACOUSTICAL PERFORMANCE OF A STEEL BEAM OF GROOVE PROFILE: FIELD TEST AND NUMERICAL ANALYSIS
Z.Q. Liu and X. Zhang*

PERFORMANCE OPTIMIZATION OF A STEEL-UHPC COMPOSITE ORTHOTROPIC BRIDGE WITH INTELLIGENT ALGORITHM
Z. Xiang*, Z.W. Zhu, J.Y. Cai and J.P. Li

LOAD-CARRYING CAPACITY OF DAMAGED STEEL GIRDER
E. Yamaguchi*, T. Amamoto, D. Nakashima and K. Shiraishi

Cold-Formed

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF STRAW BALE
H.S. Sun, B.Z. Cao*, Z.H. Chen

A SURROGATE MODEL TO ESTIMATE THE AXIAL COMpressive CAPACITY OF COLD-FORMED STEEL OPEN BUILT-UP SECTIONS
S.R. Kho*, A.L.Y. Ng, D.T.W. Looi

LOCAL BUCKLING BEHAVIORS OF COLD-FORMED CIRCULAR HOLLOW SECTIONS HIGH STRENGTH STEEL STUB COLUMNS BASED ON A HIGH-FIDELITY NUMERICAL MODEL
C. Yang, L. Ying* and Y.N. Zhao

BEHAVIOR OF WEB PERFORATED COLD-FORMED STEEL BEAMS UNDER COMBINED BENDING AND SHEAR ACTION
L.P. Wang*, J. Li, X.X. Cao and H.B. Wang

OVERHANG EFFECT ON WEB CRIPLING CAPACITY OF COLD-FORMED AUSTENITIC STAINLESS STEEL SHS MEMBERS: AN EXPERIMENTAL STUDY
K.J. Zhan, C. Chen, Y. Cai and H.T. Li*

Composite

CALCULATION METHOD OF ULTIMATE LOAD BEARING CAPACITY OF CONCRETE FILLED STEEL TUBULAR LATTICE COLUMNS
J.J. Qi*, X. Hu, W.B. Zhou, W.H. Shi and Z. Huang

AXIAL COMPRESSION BEHAVIOR OF SQUARE THIN-WALLED CFST COLUMN TO RC BEAM JOINTS
D. GAN*, Z.X. Zhao, X.H. Zhou and Z. Zhou*
NUMERICAL SIMULATION ANALYSIS OF TEMPERATURE FIELD OF BOX-TYPE COMPOSITE WALL
Q.Q. He, R. Li, C. Xue, T. Lan and G.C. Qin

248

THERMO-MECHANICAL COUPLING RESPONSE ANALYSIS OF THE BOX-PLATE PREFABRICATED STEEL STRUCTURE UNDER FIRE
C. Xue, R. Li, G.C. Qin and T. Lan*

261

STUDY ON FIRE RESISTANCE OF BOX-TYPE COMPOSITE WALLS
Y.Q. Fu, Q.Q. He, G.C. Qin, T. Lan* and R. Li

273

NUMERICAL SIMULATION AND RESEARCH ON WELDING RESIDUAL STRESS OF BOX-TYPE STEEL STRUCTURE
R. X. Gao , Men J. J., Lan T* and Li. R

285

STUDY ON SHEAR BEHAVIOR OF BOX-TYPE STEEL STRUCTURE CONSIDERING WELDING EFFECT
S. Wang, C. Xue, T. Lan* and J.J. Men

293

STUDY ON LOCAL BEARING CAPACITY OF COMPOSITE I-GIRDER WITH CONCRETE-FILLED TUBULAR FLANGE AND CORRUGATED WEB
C.J. Wu, L.X. Deng* and Y.B. Shao

303

PERFORMANCE OF STUD SHEAR CONNECTIONS IN COMPOSITE SLABS WITH VARIOUS CONFIGURATIONS
M.H. Shen, K.F. Chung* and X.D. Wang

309

STUDY OF INITIAL IMPERFECTION OF CONCRETE-FILLED CIRCULAR STEEL TUBE COLUMNS FOR DIRECT ANALYSIS
Z.J. Zhang , J.L. Xing, Y.P. Liu* and G.C. Li

318

Connections

SEISMIC PERFORMANCE OF THREE-DIMENSIONAL STEEL BEAM-COLUMN CONNECTIONS
Y.L. Xu*, Y.F. Shang and Y.X. Su

328

EXPERIMENTAL STUDY ON TRUSS TYPE STEEL REINFORCED CONCRETE JOINTS
T. Chen*, X.L. Gu, W.R. Fu, Q.H. Huang and B. Peng

337

EXPERIMENTAL INVESTIGATION ON THE STRUCTURAL BEHAVIOR OF CORRODED SELF-DRILLING SCREW CONNECTIONS IN COLD-FORMED STEEL STRUCTURES

348
ULTIMATE STRENGTH, DUCTILITY AND FAILURE MODE OF HIGH-STRENGTH FRICTIONAL BOLTED JOINTS MADE OF HIGH STRENGTH STEEL
Z.C. Qin*, H. Moriyama, T. Yamaguchi, M. Shigeishi, Y. Xing and A. Hashimoto

EXPERIMENTAL STUDY ON BOLTED CONNECTIONS IN COLD-ROLLED ALUMINIUM PORTAL FRAMES
H.C. Nguyen and C.H. Pham*

EXPERIMENTAL STUDY ON BEHAVIOR OF THE GUSSET-PLATE JOINT OF ALUMINUM ALLOY PORTAL FRAME
J. Liu*, X.N. Guo and Y.F. Luo

PARAMETRIC STUDIES ON SCF DISTRIBUTION OF THREE-PLANAR TUBULAR Y-JOINTS UNDER IN-PLANE BENDING MOMENT
S.L. Bao*, Y.T. Tai, Y. Tian, X.Y. Zhao and R.N. Li

PARAMETRIC STUDIES ON THE MOMENT RESISTANT BEAM-COLUMN CONNECTION BEHAVIOR OF CONCRETE FILLED DOUBLE STEEL TUBULAR COLUMNS AND I STEEL BEAMS
M. Sulthana*, T. Supritha

LOAD TRANSFER MECHANISM OF STEEL GIRDER-RC PIER CONNECTION IN COMPOSITE RIGID-FRAME BRIDGE
H.X. Liu*, Xianlin Wang, Maofeng Yu, Binqiang Guo and Yuqing Li

COMPARISON OF MECHANICAL BEHAVIOR BETWEEN LONGITUDINAL LAP-WELDED JOINTS AND TRANSVERSE FILLET WELDED JOINTS OF HIGH STRENGTH STEEL
S.H. Jiang, M.M. Ran*, F. Xiong and Y.C. Zhong

STUDY ON THE STATIC BEHAVIOR OF COLD-FORMED STEEL FABRICATED BEAM-COLUMN JOINT
L.P. Wang*, A. Abubakar B* and J. Li

NUMERICAL STUDY OF THE PRELOAD FORCE LOSS OF CORRODED HIGH-STRENGTH BOLTS
Y. Jin, X. Zhang and Z.Y. Kong*

Corrosion, Fracture & Collapse

ANTI-WIND CAPACITY CHECK AND COLLAPSES ANALYSIS OF EXISTING TRANSMISSION TOWER
W.T. Zhang*, Y.Q. Xiao, C. Li and Q.X. Zheng
DYNAMIC ANALYSIS OF LONG-SPAN TRANSMISSION TOWER-LINE SYSTEM UNDER DOWNBURST
D.K. Zhang*, H.Z. Deng and X.Y. Hu
475

APPLICATION RESEARCH OF V CONTAINING HIGH STRENGTH WEATHERING STEEL IN STEEL STRUCTURE BUILDING
Z.R. Li*, K.Y. Cui, C.W. Wang and S. Chen
487

EFFECT OF VARIOUS BOUNDARY CONSTRAINTS ON THE COLLAPSE BEHAVIOR OF MULTI-STORY COMPOSITE FRAMES
Z. Tan, W.H. Zhang*, X.Y. Song, B. Meng, C.F. Li, and S.C. Duan
496

Design & Analysis

STRENGTHENING DESIGN AND MECHANICAL BEHAVIOR ANALYSIS OF THE MAIN STRUCTURE FOR AN INDUSTRIAL WORKSHOP WHEN EQUIPMENT CHANGED
B. Jiang*, L. Jiang, S.C. Sang, Y.Y. Li, Y.G. Wu
510

ENHANCEMENT OF ANTI-COLLAPSE CAPACITY OF STEEL FRAME WITH OPENINGS IN BEAM WEB
B. Meng*, W.H. Zhong and J.P. Hao
518

INNOVATION AND PRACTICE IN BUILDING STRUCTURE DESIGN
Y.Q. Zhang*, J.M. Ding and Z. Zhang
530

CORRELATION BETWEEN RANDOM LOCAL MECHANICAL PROPERTIES OF STRUCTURAL STEEL
A. Machowski, M. Maslak* and M. Pazdanowski
540

RESEARCH ON CALCULATION METHOD OF LOADED COMPRESSION MEMBER OF SINGLE-LIMB FIRE-CURVED EQUILATERAL DOUBLE SPLICING T-SHAPED ANGLE STEEL
X.D. Li*, Z.G. Fang, J.Q. Ye, D.H. Sun and W. Yao
552

ROTATIONAL STIFFNESS MODEL FOR SHALLOW EMBEDDED STEEL COLUMN BASES
X.X. Xu*, X.Z. Zhao and S. Yan
561

STUDY ON MECHANICAL PROPERTIES OF SIMPLIFIED STEEL FRAME MODEL WITH EXTERNAL WALL PANELS
Y.Z. Liu* and W.Y. Zhang
573

INTEGRATED DESIGN OPTIMIZATION FOR LONG SPAN STEEL TRANSFER TRUSS
586
AT REDEVELOPMENT OF HONG KONG KWONG WAH HOSPITAL
X.K. Zou, Y. Zhang, Y.P. Liu*, L.C. Shi and D. Kan

Direct Analysis

SECOND-ORDER DIRECT ANALYSIS FOR STEEL H-PILES ACCOUNTING FOR POST-DRIVING RESIDUAL STRESSES
W.H. Ouyang, L. Chen and S.W. Liu*

Fatigue

RECONSTRUCTION METHOD OF FATIGUE DAMAGE STATE OF IN-SERVICE STEEL BRIDGE WITHOUT LOAD INFORMATION
L.T. Da*, Q.H. Zhang, M.Z. Li and C. Cui

FATIGUE PERFORMANCE OF RIB-TO-DECK JOINTS STRENGTHENED WITH INTERNAL WELDING
M.Z. Li*, Q.H. Zhang, J. Li, L.T. Da and C. Cui

EXPERIMENTAL INVESTIGATION ON RESIDUAL STRESS DISTRIBUTION AND RELAXATION EFFECT AT DOUBLE-SIDE WELDED RIB-TO-DECK JOINTS OF ORTHOTROPIC STEEL DECKS
Y. Ma*, C. Cui, Q.H. Zhang and W.L. Lao

FATIGUE BEHAVIOUR OF TITANIUM-CLAD BIMETALLIC STEEL PLATE WITH DIFFERENT INTERFACIAL CONDITIONS

MECHANICAL PROPERTIES AND SIMULATION METHOD OF STRUCTURAL STEEL AFTER HIGH CYCLE FATIGUE DAMAGE
Q. Si, Y. Ding, L. Zong* and H. Liu

EXPERIMENTAL STUDY ON WELDING RESIDUAL STRESS OF TWO-WAY STIFFENED STEEL PLATES
Z. Shao, Y.X. Li, S.Y. Song, W.L. Jin, Y.Q. Liu*

Volume II

Fire
BENDING MECHANICAL PROPERTIES OF STEEL - WELDED HOLLOW SPHERICAL JOINTS AT HIGH TEMPERATURES 671
L. Wang, H.B. Liu*, H. Dong, and X.N. Liu

HIGH STRENGTH STEEL BEAM BEHAVIOR UNDER FIRE EXPOSURE CONSIDERING CREEP 685
H. Al-azzani*, W.Y. Wang and A. Sharhan

EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF GRADE 1670 STEEL WIRES AT AND AFTER ELEVATED TEMPERATURE 692

FINITE ELEMENT SIMULATION FOR ULTRA-HIGH-PERFORMANCE CONCRETE-FILLED DOUBLE-SKIN TUBES EXPOSED TO FIRE 707
A.H.A. Abdelrahman*, M. Ghannam, S. Lotfy, and M. AlHamaydeh

High-Strength Steel

EXPERIMENTAL INVESTIGATION OF RESIDUAL STRESS IN WELDED T-SECTION BY DOMESTIC Q460 HIGH STRENGTH S 720
X.L. Xiong*, F.R. Nkuichou, T. Wang, M. Ma and K. Du

CORROSION EFFECTS ON MECHANICAL PROPERTIES OF Q620 HIGH-STRENGTH STEEL 733
N. Wang, J.M. Hua, X.Y. Xue*, Q.Q. Huang, F. Wang

Impact and protection

TENSILE BEHAVIOR OF T-STUB SUBJECTED TO STATIC AND DYNAMIC LOADS 744
H. Huang, L.M. Ren, K. Chen, X.J. Li, L. Wang and B. Yang*

Intelligent Construction

APPLICATION OF HYDRAULIC SYNCHRONOUS LIFTING TECHNOLOGY IN CONSTRUCTION OF LONG-SPAN HYBRID STEEL STRUCTURES 754
M.L. Zhang*, W. Liu, Z. Lei, D.G. Wang, J.Y. Wang, L.Y. Zhou* and X.P. Shu

TESTING OF ADDITIVELY MANUFACTURED STAINLESS STEEL MATERIAL AND CROSS-SECTIONS 767
R.Z. Zhang*, L. Gardner and C. Buchanan

EMBODIED CARBON CALCULATION AND ASSESSMENT FOR STEEL STRUCTURE PROJECT 781
D. Chan, W. Sun and Y.Y. Wang*
COMPLETE SET CONSTRUCTION TECHNOLOGY OF LARGE OPENING CABLE DOME STRUCTURE BASED ON INTEGRATED
Y.Y. Shang*, Z.S Xing, C.Q. Wu, F.S. Lu and B. Luo

COMPLETE SET ROTATION-LIFTING CONSTRUCTION TECHNOLOGY FOR FREE-FORM SURFACE ROOF STRUCTURES WITH LARGE ELEVATION DIFFERENCE
Z.S. Xing, S.R. Jia, Z.H. Zhang and D.C. Ye

New Materials

FINITE ELEMENT ANALYSIS ON BEHAVIOR OF HCFHST MIDDLE LONG COLUMNS WITH INNER I-SHAPED CFRP UNDER AXIAL LOAD
G.C. Li, R.Z. Li* and Z.J. Yang

STUDY ON THE MECHANICAL BEHAVIOR OF GFRP PLATE-CONE CYLINDRICAL RETICULATED SHELL
X. Wang, L. Chen, Y.H. Huang, F. Wang* and X. Zhang

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES AND OPTIMIZATION OF CHOPPED BASALT FIBER REINFORCED CONCRETE
Q. Liu, Z.X. Yu and R. Guo*

STUDY ON MECHANICAL PROPERTIES OF STAINLESS STEEL PLATE SHEAR WALL STRENGTHENED BY CORRUGATED FRP
Y.P. Du* and L. Zhong

DESIGN OF THE DEPLOYABLE-FOLDABLE ACTUATOR AND VIBRATION CONTROL DEVICE BASED ON THE SHAPE MEMORY ALLOYS WITH A TWO-WAY EFFECT
D. Song*, Y.J. Lu, and C.Q. Miao

Seismic Resistance

FEASIBILITY STUDY OF VISCOELASTIC HYBRID SELF-CENTERING BRACE (VSCB) FOR SEISMIC-RESISTANT STEEL FRAMES
Y.W. Ping, C. Fang* and Y.Y. Chen

TEST ON RESILIENCE CAPACITY OF SELF-CENTERING BUCKLING RESTRAINED BRACE WITH DISC SPRINGS

MECHANICAL PROPERTIES OF KINKED STEEL PLATES AND THEIR APPLICATIONS IN FRAME STRUCTURES
X.J. Yang, F. Lin* and C.P. Liu
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismic Collapse and Debris Distribution of Steel Frame Structures with Infill Walls</td>
<td>889</td>
</tr>
<tr>
<td>Z. Xu and F. Lin*</td>
<td></td>
</tr>
<tr>
<td>Analysis of Transient Structural Responses of Steel Frames with Non-Symmetric Sections Under Earthquake Motion</td>
<td>899</td>
</tr>
<tr>
<td>W.L. Gao, L. Chen and S.W. Liu*</td>
<td></td>
</tr>
<tr>
<td>Seismic Resilience Assessment of a Single-Layer Reticulated Dome During Construction</td>
<td>911</td>
</tr>
<tr>
<td>T.L. Zhang and J.Y. Zhao*</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>Local Buckling (Wrinkling) of Profiled Metal-Faced Insulating Sandwich Panels - A Parametric Study</td>
<td>930</td>
</tr>
<tr>
<td>M.N. Tahir* and E. Hamed</td>
<td></td>
</tr>
<tr>
<td>Comparative Study on Stability of Welded and Hot-Rolled Q420 L300×30 Columns</td>
<td>938</td>
</tr>
<tr>
<td>A.P. Chou and G. Shi*</td>
<td></td>
</tr>
<tr>
<td>Elastic Buckling of Outstand Stainless-Clad Bimetallic Steel Plates Subjected to Uniaxial Compression</td>
<td>946</td>
</tr>
<tr>
<td>Y.X. Mei* and H.Y. Ban</td>
<td></td>
</tr>
<tr>
<td>Imperfection Sensitivity of Non-Triangulated Cylindrical Shell Configurations</td>
<td>955</td>
</tr>
<tr>
<td>R. Kolakkattol*, K.D. Tsavdaridis, and A.S. Jayachandran</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel</td>
<td></td>
</tr>
<tr>
<td>Material Properties and Local Stability of WAAM Stainless Steel Plates with Different Deposition Rates</td>
<td>968</td>
</tr>
<tr>
<td>S.I. Evans* and J. Wang</td>
<td></td>
</tr>
<tr>
<td>A Reexamination on Calibration of Cyclic Constitutive Model for Structural Steels</td>
<td>980</td>
</tr>
<tr>
<td>Finite Element Modeling of Concrete-Filled Stainless-Clad Bimetallic Steel Square Tubes Under Axial Compression</td>
<td>992</td>
</tr>
<tr>
<td>Z.J. Chen*, H.Y. Ban, Y.Q. Wang</td>
<td></td>
</tr>
</tbody>
</table>
Structure Systems

INVESTIGATION OF CYCLIC BEHAVIOR OF FULL-SCALE TREE-LIKE HOLLOW STRUCTURAL SECTION COLUMNS WITH INFILLED CONCRETE
D. Gan*, Z.H. He, and H.H. Huang

ANALYSIS OF THE SEISMIC BEHAVIOR OF INNOVATIVE ALUMINIUM ALLOY ENERGY DISSIPATION BRACES
B. Jia*, Q.L. Zhang and T. Wu

SHAKING TABLE TEST OF NEW LIGHT STEEL STRUCTURE SYSTEM

Testing & Monitoring

THE CRACK DETECTION METHOD OF LONGITUDINAL RIB BUTT WELD OF STEEL BRIDGE BASED ON ULTRASONIC LAMB WAVE
D.K. Zhang*, Q.H. Zhang, C. Cui and S.J. Qiu

ON FIELD-MEASURED VERTICAL TEMPERATURE GRADIENT OF BOX GIRDER IN STEEL BRIDGES
Z.W. Zhu*, T. Qin, X.W. Chen
Preface

These proceedings contain the papers presented at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation—joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Cold-formed Steel, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue, Fire, High-Strength Steel, Impact and Protection, Intelligent Construction, New Material, Seismic Resistance, Stability, Stainless Steel, Structure Systems, Testing & Monitoring. The papers presented in these proceedings come from a wide range of countries/regions and will be a great reference source.

Specially, the subject matter has been categorized under the broad heading of:

Volume I: Keynotes Lectures, Assembled Structure, Bridge, Cold-Formed, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue

Each of the papers was subjected to stringent review by a panel of experts in the respective area. This peer review began with an assessment of the submitted abstracts and following this, authors were invited to submit their full manuscripts. Each manuscript was then carefully reviewed by relevant experts, and their recommendations on accepting, rejecting or modifying the submissions were strictly adhered to, before inclusion in the conference proceedings.
STUDY OF INITIAL IMPERFECTION OF CONCRETE-FILLED CIRCULAR STEEL TUBE COLUMNS FOR DIRECT ANALYSIS (ICASS’2020)

Z.J. Zhang 1, J.L. Xing 1, Y.P. Liu 2,3* and G.C. Li 1

1 School of Civil Engineering, Shenyang Jianzhu University, Shenyang, China 110168
E-mails: zhangjiuandyx@163.com;

2 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China 999077

3 NIDA Technology Company Limited, Hong Kong Science Park, Hong Kong, China
E-mail: yaopeng.liu@connect.polyu.hk (Corresponding author)

Abstract: The initial imperfection and residual stress play important roles in the buckling resistance of both structural system and structural members. The latest Standard for Design of Steel Structures (GB50017-2017) firstly introduces the direct analysis method for the stability design of steel structures in China. The equivalent initial imperfections for steel members have been well specified in this code. However, as an important part of modern structures, there is limited research on the initial imperfections of steel-concrete composite members in relevant regulations in China. Therefore, it is urgent to study the equivalent initial imperfections of steel-concrete members for direct analysis. This paper collects extensive experimental data on concrete-filled circular steel tube columns (CFCSTC) for calibration of finite element models using software ABAQUS. The key factors affecting CFCSTC’s behaviors such as section dimensions, grades of steel and concrete, and width-to-thickness ratios have been taken into account. A comparative analysis for the CFCSTC with and without initial imperfections will be presented. From this study, the equivalent initial imperfection for CFCSTCs will be proposed for practical direct analysis of steel-concrete composite structures to achieve a safer and economical design without use of conventional effective length method.

Keywords: Concrete-filled square steel tube column; Initial imperfection; Direct analysis method; Finite element analysis (FEA)

DOI: 10.18057/ICASS2020.P.364

1 INTRODUCTION

Concrete-filled steel tubular columns are widely used in high-rise building structures because of their high bearing capacity, good ductility, and superior seismic performance. (Han 2020) With the rapid development of China’s economic construction, the building structures are constantly breaking through in span and height, while the building shape has become more complex. At the same time, various high-strength and high-performance materials are continuously introduced. These factors make the slenderness ratios of the structures and structural elements larger with significant increase of second-order effects. Also, the load path becomes complex. Thus, the conventional linear analysis method cannot provide a good prediction on the structural responses. The effective length method based on linear analysis for stability design faces great challenges in practical engineering. The latest Standard for Design of Steel Structures (GB50017-2017) introduces the direct analysis method for the first time, and
makes corresponding provisions on the design of steel structures by the direct analysis method. The equivalent initial geometric imperfection of steel members lays a foundation for the overall analysis of steel structures. Not that as an important part of modern structures, the steel-concrete composite members are rarely mentioned in China’s relevant codes or regulations, resulting in engineers having no relevant code provisions to consult when designing steel-concrete composite structures. Therefore, it is necessary to carry out comprehensive research on CFSTCs from traditional design methods to experimental research considering various section sizes, loading conditions and materials.

In recent years, a large number of research studies on CFCSTC can be found in the literature (Han et al. 2008, Yang and Han 2012, Liu and Han 2006, Ding and Yu 2005, Xiao and Huang 2011). J. Lindner et al. (J. Lindner et al 2018) found that axial pressure members are more sensitive to initial imperfection; Wang L.P. et al. (Wang et al 2021) compared the differences between the empty steel tube and the concrete filled steel tube columns in the loading process, the influence of different parameters on the performance of the CFSTCs were obtained; On the basis of the experiment verification, Liu Jing et al. (Liu Jing et al 2015) explores the influence of local compression area ratio, steel ratio, strength of steel and concrete on ultimate capacity. There are few studies on the initial imperfection of CFSTC. For this reason, this paper takes axially compressed CFCSTC members (Joachim 2018) as the research object. In order to put forward the equivalent initial geometric imperfection of CFSTC suitable for Chinese standards, the test results from China, American and other countries on CFSTC are collected. This paper provides theoretical and design basis for the direct analysis method of CFCSTCs.

2 CONCRETE FILLED CIRCULAR STEEL TUBE COLUMN CONSIDERING IMPERFECTION

2.1 Initial geometric imperfection

In steel standards, the mode of initial imperfection in the component geometry can be defined as:

\[\delta_0 = e_0 \sin \frac{\pi x}{l} \]

(1)

in which, \(x \) is the distance from the first end of the member; \(\delta_0 \) is the initial deformation at \(x \); \(e_0 \) is the initial bowing at the middle of the member; \(l \) is the member length. The equivalent geometric imperfection of the member (Du et al. 2019) is shown in Fig. 1.

![Figure 1: Equivalent geometric imperfection](image)

2.2 Residual stress of steel

Initial material imperfection generally refers to residual stresses that are widely existing in hot-rolled or welded steel members. Residual stress is mainly caused by processes such as rolling, welding and cold forming. Residual stresses are self-balancing stresses in the members, and the stress distribution patterns have a great correlation with the shape of the cross-section. As an initial mechanical imperfection, residual stress will cause early yield and cracks of the member, and is also one of the factors affecting the stability performance of the axially loaded members. Therefore, the influence of residual stresses also needs to be considered in the design
of CFSTCs.

2.3 Procedure of consideration of initial imperfections

Before performing geometrical and material nonlinear analysis, the initial imperfection should be taken into account by offsetting the nodal coordinates by following the buckling mode shape. The keywords "**imperfection, file = buckle" (the job name of the eigen buckling analysis), step = 1" command is required to introduce the initial deformation.

In the nonlinear analysis allowing for geometrical and material nonlinearity, the displacement control plus correction of the arc length method is adopted for incremental-iterative nonlinear solution.

2.4 Amplitude of initial imperfection for CFCSTC

According to GB50017 (2017), the initial member imperfections vary from L/400 to L/250 for steel members. There is no doubt that the ultimate bearing capacity of CFCSTC will be reduced if the initial imperfection is included. However, there is limited research on the determination of initial imperfections for steel-concrete composite members. Thus, this paper aims to study the amplitude of initial imperfection for CFCSTC members. As no initial imperfections were reported in the literature, three equivalent initial geometric imperfections are assumed to study the sensitivity of amplitudes on the ultimate bearing capacity of the CFSSSTCs, as listed in Table 1. To clearly demonstrate the contribution of initial imperfection, a model “0” without imperfection is also presented.

<table>
<thead>
<tr>
<th>Model</th>
<th>Initial Bowing Imperfection, e₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 (No imperfection)</td>
</tr>
<tr>
<td>1</td>
<td>3L/1000</td>
</tr>
<tr>
<td>2</td>
<td>L/1000</td>
</tr>
<tr>
<td>3</td>
<td>L/3000</td>
</tr>
</tbody>
</table>

Because previous studies have found that initial imperfections have a greater impact on the bearing capacity at L/1000 to 3L/1000, they are not described in detail here. Totally five equivalent initial imperfections as listed in Table 2 are investigated.

<table>
<thead>
<tr>
<th>Model</th>
<th>Initial Bowing Imperfection, e₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L/900</td>
</tr>
<tr>
<td>5</td>
<td>L/800</td>
</tr>
<tr>
<td>6</td>
<td>L/700</td>
</tr>
<tr>
<td>7</td>
<td>L/600</td>
</tr>
<tr>
<td>8</td>
<td>L/500</td>
</tr>
</tbody>
</table>

3 EXPERIMENTAL TEST DATA

In order to study the influence of initial imperfection on CFSSSTC, this paper collects nearly 100 sets of test data from literature. The data sources and the specimens adopted in this study are listed in Table 3. According to the section sizes and boundary conditions of CFCSTC in literatures, the finite element models are established in ABAQUS.

<table>
<thead>
<tr>
<th>Source of Experimental Tests</th>
<th>Specimen No.</th>
<th>D(mm)</th>
<th>t(mm)</th>
<th>L(mm)</th>
<th>f_c'</th>
<th>f_y</th>
<th>N_FE</th>
<th>N_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayashi (1990)</td>
<td>L-20</td>
<td>177.8</td>
<td>9.00</td>
<td>360</td>
<td>22.06</td>
<td>283.3</td>
<td>2015</td>
<td>1901</td>
</tr>
</tbody>
</table>
321

3.1 Analysis of calculation results

17 groups of test results of concrete-filled circular steel tubular short columns in the literature are selected for finite element analysis. The model is established by the finite element theory in Section 4. The finite element results \(N_{FE} \) and test results \(N_E \) are shown in Table 3. The average value of the ratio between the test results and the finite element results is 1.001, and the dispersion coefficient is 0.070. It can be seen that the finite element calculation results are in good agreement with the test results.

The authors have studied that the simulation results of the column meet the specification requirements when considering the amplitude of equivalent initial imperfection \((e_0)\) is L/500.

4 FINITE ELEMENT MODEL

4.1 Establishment of model and constitutive relation

The finite element model of the CFCSTC column subjected to axial compression is established in ABAQUS. All the components of the column are modeled by solid element C3D8R. The steel tube-concrete interface adopts friction contact and hard contact with a friction coefficient of 0.6. The end plate-concrete adopts hard contact, while the end plate and steel pipe are connected by tie elements. The boundary conditions and applied load are shown in Fig. 2. When considering the constitutive relationship, in order to make the calculation results more credible, two constitutive relations are used, namely the constitutive relationship model proposed by Han L.H. and the constitutive relationship model proposed by the specification. The stress-strain relationship of low-carbon steel such as Q235, Q345 and Q390 can generally be divided into five stages (Han 2016), which is expressed in Eq. (2)(3); The constitutive relationship model of concrete adopts the model of longitudinal stress \((\sigma)\)-strain \((\varepsilon)\) of core concrete proposed by Han (2016), which is expressed in Eq. (4)(5).
\[\sigma_s = \begin{cases} E_s \varepsilon_s & \varepsilon_s \leq \varepsilon_e \\ -A\varepsilon_s^2 + B\varepsilon_s + C & \varepsilon_e < \varepsilon_s < \varepsilon_{e1} \\ f_y (1 + 0.6 \frac{\varepsilon_s - \varepsilon_{e2}}{\varepsilon_{e3} - \varepsilon_{e2}}) & \varepsilon_{e2} < \varepsilon_s < \varepsilon_{e3} \\ 1.6f_y & \varepsilon_s > \varepsilon_{e3} \end{cases} \]

(2)

with

\[\begin{align*}
\varepsilon_e &= 0.8f_y/E_s \\
\varepsilon_{e1} &= 1.5\varepsilon_e \\
\varepsilon_{e2} &= 10\varepsilon_{e1} \\
\varepsilon_{e3} &= 100\varepsilon_{e1} \\
A &= 0.2f_y/(\varepsilon_{e1} - \varepsilon_e)^2 \\
B &= 2A\varepsilon_{e1} \\
C &= 0.8f_y + A\varepsilon_{e1}^2 - B\varepsilon_e \\
y &= \begin{cases} 2x - x^2 & (x \leq 1) \\ x & (x > 1) \end{cases}
\end{align*} \]

(3)

4.2 Model Validation

In order to verify the validity of the model, it was necessary to compare the load-strain curves obtained from the ABAQUS finite element calculations with the experimental studies. The results showed that the numerical simulation results agreed well with the experimental results. However, it could be found that the initial stiffness of the curve was less than the numerical simulation results, possibly due to the presence of initial imperfection in the specimen, which
led to the rapid development of lateral deflection during the stressing process. For this reason it proves that initial imperfection need to be considered.

4.3 Parametric analysis

Based on the above analysis, 13 finite element models for CFCSTC 1 under axial load are established. The main parameters are concrete compressive strength (i.e. f_{cu} from 30Mpa to 50Mpa), steel yield strength (i.e. f_y from 235Mpa to 420Mpa) and the length of the component (i.e. l from 1000mm to 2000mm). The settings for boundary conditions and applied load of the finite element model are shown in Fig.2. The specific parameters and the numerical results are shown in Table 4.

<table>
<thead>
<tr>
<th>Model</th>
<th>$D \times t \times L$</th>
<th>f_{cu}</th>
<th>f_y</th>
<th>D/t</th>
<th>P_u</th>
<th>$P_{ue}(e_0=L/500)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFCSTC-1</td>
<td>100 × 5 × 1000</td>
<td>30</td>
<td>345</td>
<td>20</td>
<td>622.0</td>
<td>478.0</td>
</tr>
<tr>
<td>CFCSTC-2</td>
<td>100 × 5 × 1000</td>
<td>30</td>
<td>390</td>
<td>20</td>
<td>676.3</td>
<td>555.1</td>
</tr>
<tr>
<td>CFCSTC-3</td>
<td>100 × 5 × 1000</td>
<td>30</td>
<td>420</td>
<td>20</td>
<td>716.0</td>
<td>637.0</td>
</tr>
<tr>
<td>CFCSTC-4</td>
<td>100 × 5 × 1000</td>
<td>40</td>
<td>345</td>
<td>20</td>
<td>645.6</td>
<td>516.0</td>
</tr>
<tr>
<td>CFCSTC-5</td>
<td>100 × 5 × 1000</td>
<td>40</td>
<td>390</td>
<td>20</td>
<td>694.0</td>
<td>582.9</td>
</tr>
<tr>
<td>CFCSTC-6</td>
<td>100 × 5 × 1000</td>
<td>40</td>
<td>420</td>
<td>20</td>
<td>728.5</td>
<td>688.0</td>
</tr>
<tr>
<td>CFCSTC-7</td>
<td>100 × 5 × 1000</td>
<td>50</td>
<td>345</td>
<td>20</td>
<td>672.4</td>
<td>558.0</td>
</tr>
<tr>
<td>CFCSTC-8</td>
<td>100 × 5 × 1000</td>
<td>50</td>
<td>390</td>
<td>20</td>
<td>717.6</td>
<td>609.8</td>
</tr>
<tr>
<td>CFCSTC-9</td>
<td>100 × 5 × 1000</td>
<td>50</td>
<td>420</td>
<td>20</td>
<td>749.5</td>
<td>674.5</td>
</tr>
<tr>
<td>CFCSTC-10</td>
<td>100 × 5 × 1500</td>
<td>40</td>
<td>345</td>
<td>20</td>
<td>645.6</td>
<td>464.8</td>
</tr>
<tr>
<td>CFCSTC-11</td>
<td>100 × 5 × 2000</td>
<td>40</td>
<td>345</td>
<td>20</td>
<td>609.0</td>
<td>383.7</td>
</tr>
<tr>
<td>CFCSTC-12</td>
<td>100 × 4 × 1000</td>
<td>40</td>
<td>345</td>
<td>25</td>
<td>580.1</td>
<td>452.5</td>
</tr>
<tr>
<td>CFCSTC-13</td>
<td>100 × 6 × 1000</td>
<td>40</td>
<td>345</td>
<td>25</td>
<td>689.2</td>
<td>606.5</td>
</tr>
</tbody>
</table>

Note: P_u is the ultimate bearing capacity from finite element analysis, while P_{ue} is obtained from the proposed finite element model with different amplitude of initial imperfection.

4.3.1 Influence of concrete strength

Figure 3 (a)(b) show the P-Δ curve under the influence of concrete strength (f_{cu}) and initial imperfection. When the amplitude e_0 is L/500, the concrete strength is increased from 30Mpa to 50Mpa (increased 66.7%), the reduction in the bearing capacity of the column is reduced from 23% by 17%. It shows that with the strength of the concrete increases, the impact of initial imperfection on the column decreases.

4.3.2 Influence of steel yield strength

Figure 4 (c)(d) show the P-Δ curve under the influence of steel strength and initial imperfection. In the case of amplitude e_0 is L/500, when the yield strength of the steel is increased from 345Mpa to 420Mpa (increased 21.7%), the bearing capacity of the column is reduced from 23% to 11%. It can be seen that when considering the initial imperfection, the influence of steel strength on the bearing capacity of the column is more obvious.

4.3.3 Influence of slenderness ratio

Figure 5 (e)(f) show the P-Δ curve under the influence of the slenderness ratio (λ) and initial imperfection. It can be seen that with the increase of the slenderness ratio, the lateral deflection of the component develops rapidly. Due to the difference in initial imperfection, when the slenderness ratio is increased from 40 to 80, the bearing capacity of the column is also reduced by different amounts, from the original 20% to 35%. It can be seen that the slenderness ratio of the column is changed, and the bearing capacity changes greatly.
4.3.4 Influence of steel ratio

Figure 6 (g) (h) show the P-Δ curve under the influence of initial imperfection and steel ratio (α). The increase of α increases the elastic stiffness of P-Δ curve. When the α increases from 0.181 to 0.291, the reduction of bearing capacity decreases from 22% to 12%. It can be seen that the influence of the α on the bearing capacity is similar to that of the above-mentioned steel yield strength. Compared with the amplitude e_0 is L/600, the influence of the α on the bearing capacity of the amplitude e_0 is L/500 is more obvious. Because steel is a plastic material, increasing the yield strength or the α is conducive to improving the bearing capacity of members with large slenderness ratio.

Figure 3: Influence of concrete strength

Figure 4: Influence of steel yield strength
Figure 5: Influence of slenderness ratio

Figure 6: Influence of steel ratio

5 CONCLUSIONS

In this paper, the equivalent initial geometric imperfection of CFCSTCs for direct analysis are studied by using finite element analysis against the experimental test data. The following conclusions can be drawn from the scope of the study in this paper:

(1) ABAQUS numerical simulation results show that the influence of initial imperfection on bearing capacity increases with the increase of slenderness ratio of columns; Increasing concrete strength, steel strength and steel ratio can improve the bearing capacity of the column, and the effect of steel yield strength on the bearing capacity is more obvious.

(2) Results of the numerical models using ABAQUS compared with the results of specification, thus, it is proved that the bearing capacity of the CFCSTCs meets the requirements of the specification. The finite element model with the proposed equivalent initial imperfection also meets the requirements of the specification.

(3) It is recommended that the equivalent initial geometric imperfection of CFCSTCs in the direct analysis of practical projects should be not less than L/500.
REFERENCES

These proceedings contain the papers at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation - joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Structure Systems, Composite, Connections, Design & Analysis, Direct Analysis, New Material, Fatigue, Cold-formed Steel, Intelligent Construction, Seismic Resistance, Green Construction, Corrosion, Fracture, Collapse, Fire, High-Strength Steel, Stability, Stainless Steel, Testing & Monitoring, Impact and Protection. The papers presented in these proceedings come from a wide range of countries/regions and will be a great reference source.

Volume I:
- Keynotes Lectures
- Assembled Structure
- Bridge
- Cold-Formed
- Composite
- Connections
- Corrosion, Fracture & Collapse
- Design & Analysis
- Direct Analysis
- Fatigue

Volume II:
- Fire
- High-Strength Steel
- Impact and Protection
- Intelligent Construction
- New Materials
- Seismic Resistance
- Stability
- Stainless Steel
- Structure Systems
- Testing & Monitoring

© Copyright 2022 – All Rights Reserved – Hong Kong Institute of Steel Construction Limited