Advances in Steel Structures (ICASS 2020)

Edited by

Siu-Lai Chan
Department of Civil and Environment Engineering, The Hong Kong Polytechnic University

Zhi-Xiang Yu
School of Civil Engineering, Southwest Jiaotong University

Published by
Hong Kong Institute of Steel Construction Limited
Table of Contents

Preface

Volume I

Keynote Lectures

SEISMIC DESIGN AND ANALYSIS OF STEEL PANEL DAMPERS FOR STEEL FRAME BUILDINGS

K.C. Tsai and *C.H. Hsu*

THE CONTINUOUS STRENGTH METHOD - REVIEW AND OUTLOOK

L. Gardner, *X. Yun and F. Walport*

Assembled Structure

A NEW TYPE OF ASSEMBLED THERMAL INSULATION DECORATIVE WALL SYSTEM FIRE RESISTANCE STUDY

C.L. Wang, *S.R. Jiang, B.C. Li and S. Li*

RESEARCH ON SEISMIC BEHAVIOR OF ASSEMBLED BEAM-COLUMN JOINTS WITH C-SHAPED CANTILEVER SECTION

H.C. Guo, *Y. Xie, J.B. Tian*, *Y.H. Liu, and Z.S. Wang*

EXPERIMENTAL STUDY AND NUMERICAL ANALYSIS ON SEISMIC BEHAVIOR OF ASSEMBLED BEAM-COLUMN JOINTS WITH C-SHAPED CANTILEVER SECTION

H.C. Guo, *Y. Xie, J.B. Tian*, *Y.H. Liu and Z.S. Wang*

RESEARCH ON DYNAMIC LOAD CARRYING CAPACITY OF ASSEMBLED INTERNAL STIFFENING WIND TURBINE TOWER BASED ON MULTI-SCALE MODELING

F.W. Wang, *K.M. Zhou and S.T. Ke*

Bridge

SOUND RADIATION OF ORTHOTROPIC STEEL DECKS SUBJECTED TO MOVING VEHICLE LOADS

Y.C. You and X. Zhang

POWER FLOW ANALYSIS OF BRIDGE U-RIB STIFFENED PLATES BASED ON THE CONCEPT OF STRUCTURAL INTENSITY

D.R. Kong and X. Zhang
VIBRO-ACOUSTICAL PERFORMANCE OF A STEEL BEAM OF GROOVE PROFILE: FIELD TEST AND NUMERICAL ANALYSIS
Z.Q. Liu and X. Zhang*

PERFORMANCE OPTIMIZATION OF A STEEL-UHPC COMPOSITE ORTHOTROPIC BRIDGE WITH INTELLIGENT ALGORITHM
Z. Xiang*, Z.W. Zhu, J.Y. Cai and J.P. Li

LOAD-CARRYING CAPACITY OF DAMAGED STEEL GIRDER
E. Yamaguchi*, T. Amamoto, D. Nakashima and K. Shiraishi

Cold-Formed

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF STRAW BALE
H.S. Sun, B.Z. Cao*, Z.H. Chen

A SURROGATE MODEL TO ESTIMATE THE AXIAL COMPRESSION CAPACITY OF COLD-FORMED STEEL OPEN BUILT-UP SECTIONS
S.R. Kho*, A.L.Y. Ng, D.T.W. Looi

LOCAL BUCKLING BEHAVIORS OF COLD-FORMED CIRCULAR HOLLOW SECTIONS HIGH STRENGTH STEEL STUB COLUMNS BASED ON A HIGH-FIDELITY NUMERICAL MODEL
C. Yang, L. Ying* and Y.N. Zhao

BEHAVIOR OF WEB PERFORATED COLD-FORMED STEEL BEAMS UNDER COMBINED BENDING AND SHEAR ACTION
L.P. Wang*, J. Li, X.X. Cao and H.B. Wang

OVERHANG EFFECT ON WEB CRIPPLING CAPACITY OF COLD-FORMED AUSTENITIC STAINLESS STEEL SHS MEMBERS: AN EXPERIMENTAL STUDY
K.J. Zhan, C. Chen, Y. Cai and H.T. Li*

Composite

CALCULATION METHOD OF ULTIMATE LOAD BEARING CAPACITY OF CONCRETE FILLED STEEL TUBULAR LATTICE COLUMNS
J.J. Qi*, X. Hu, W.B. Zhou, W.H. Shi and Z. Huang

AXIAL COMPRESSION BEHAVIOR OF SQUARE THIN-WALLED CFST COLUMN TO RC BEAM JOINTS
D. GAN*, Z.X. Zhao, X.H. Zhou and Z. Zhou*
NUMERICAL SIMULATION ANALYSIS OF TEMPERATURE FIELD OF BOX-TYPE COMPOSITE WALL
Q.Q. He, R. Li, C. Xue, T. lan and G.C. Qin

THERMO-MECHANICAL COUPLING RESPONSE ANALYSIS OF THE BOX-PLATE PREFABRICATED STEEL STRUCTURE UNDER FIRE
C. Xue, R. Li, G.C. Qin and T. Lan*

STUDY ON FIRE RESISTANCE OF BOX-TYPE COMPOSITE WALLS
Y.Q. Fu, Q.Q. He, G.C. Qin, T. Lan* and R. Li

NUMERICAL SIMULATION AND RESEARCH ON WELDING RESIDUAL STRESS OF BOX-TYPE STEEL STRUCTURE
R. X. Gao, Men J. J., Lan T* and Li. R

STUDY ON SHEAR BEHAVIOR OF BOX-TYPE STEEL STRUCTURE CONSIDERING WELDING EFFECT
S. Wang, C. Xue, T. Lan* and J.J. Men

STUDY ON LOCAL BEARING CAPACITY OF COMPOSITE I-GIRDER WITH CONCRETE-FILLED TUBULAR FLANGE AND CORRUGATED WEB
C.J. Wu, L.X. Deng* and Y.B. Shao

PERFORMANCE OF STUD SHEAR CONNECTIONS IN COMPOSITE SLABS WITH VARIOUS CONFIGURATIONS
M.H. Shen, K.F. Chung* and X.D. Wang

STUDY OF INITIAL IMPERFECTION OF CONCRETE-FILLED CIRCULAR STEEL TUBE COLUMNS FOR DIRECT ANALYSIS
Z.J. Zhang, J.L. Xing, Y.P. Liu* and G.C. Li

Connections

SEISMIC PERFORMANCE OF THREE-DIMENSIONAL STEEL BEAM-COLUMN CONNECTIONS
Y.L. Xu*, Y.F. Shang and Y.X. Su

EXPERIMENTAL STUDY ON TRUSS TYPE STEEL REINFORCED CONCRETE JOINTS
T. Chen*, X.L. Gu, W.R. Fu, Q.H. Huang and B. Peng

EXPERIMENTAL INVESTIGATION ON THE STRUCTURAL BEHAVIOR OF CORRODED SELF-DRILLING SCREW CONNECTIONS IN COLD-FORMED STEEL STRUCTURES
ULTIMATE STRENGTH, DUCTILITY AND FAILURE MODE OF HIGH-STRENGTH FRICTIONAL BOLTED JOINTS MADE OF HIGH STRENGTH STEEL
Z.C. Qin*, H. Moriyama, T. Yamaguchi, M. Shigeishi, Y. Xing and A. Hashimoto

EXPERIMENTAL STUDY ON BOLTED CONNECTIONS IN COLD-ROLLED ALUMINIUM PORTAL FRAMES
H.C. Nguyen and C.H. Pham*

EXPERIMENTAL STUDY ON BEHAVIOR OF THE GUSSET-PLATE JOINT OF ALUMINUM ALLOY PORTAL FRAME
J. Liu*, X.N. Guo and Y.F. Luo

PARAMETRIC STUDIES ON SCF DISTRIBUTION OF THREE-PLANAR TUBULAR Y-JOINTS UNDER IN-PLANE BENDING MOMENT
S.L. Bao*, Y.T. Tai, Y. Tian, X.Y. Zhao and R.N. Li

PARAMETRIC STUDIES ON THE MOMENT RESISTANT BEAM-COLUMN CONNECTION BEHAVIOR OF CONCRETE FILLED DOUBLE STEEL TUBULAR COLUMNS AND I STEEL BEAMS
M. Sulthana*, T. Supritha

LOAD TRANSFER MECHANISM OF STEEL GIRDER-RC PIER CONNECTION IN COMPOSITE RIGID-FRAME BRIDGE
H.X. Liu*, Xianlin Wang, Maoqian Yu, Binqiang Guo and Yuqing Li

COMPARISON OF MECHANICAL BEHAVIOR BETWEEN LONGITUDINAL LAP-WELDED JOINTS AND TRANSVERSE FILLET WELDED JOINTS OF HIGH STRENGTH STEEL
S.H. Jiang, M.M. Ran*, F. Xiong and Y.C. Zhong

STUDY ON THE STATIC BEHAVIOR OF COLD-FORMED STEEL FABRICATED BEAM-COLUMN JOINT
L.P. Wang*, A. Abubakar B* and J. Li

NUMERICAL STUDY OF THE PRELOAD FORCE LOSS OF CORRODED HIGH-STRENGTH BOLTS
Y. Jin, X. Zhang and Z.Y. Kong*

Corrosion, Fracture & Collapse

ANTI-WIND CAPACITY CHECK AND COLLAPSES ANALYSIS OF EXISTING TRANSMISSION TOWER
W.T. Zhang*, Y.Q. Xiao, C. Li and Q.X. Zheng
DYNAMIC ANALYSIS OF LONG-SPAN TRANSMISSION TOWER-LINE SYSTEM UNDER DOWNBURST
D.K. Zhang*, H.Z. Deng and X.Y. Hu

APPLICATION RESEARCH OF V CONTAINING HIGH STRENGTH WEATHERING STEEL IN STEEL STRUCTURE BUILDING
Z.R. Li*, K.Y. Cui, C.W. Wang and S. Chen

EFFECT OF VARIOUS BOUNDARY CONSTRAINTS ON THE COLLAPSE BEHAVIOR OF MULTI-STORY COMPOSITE FRAMES
Z. Tan, W.H. Zhang*, X.Y. Song, B. Meng, C.F. Li, and S.C. Duan

Design & Analysis

STRENGTHENING DESIGN AND MECHANICAL BEHAVIOR ANALYSIS OF THE MAIN STRUCTURE FOR AN INDUSTRIAL WORKSHOP WHEN EQUIPMENT CHANGED
B. Jiang*, L. Jiang, S.C. Sang, Y.Y. Li, Y.G. Wu

ENHANCEMENT OF ANTI-COLLAPSE CAPACITY OF STEEL FRAME WITH OPENINGS IN BEAM WEB
B. Meng*, W.H. Zhong and J.P. Hao

INNOVATION AND PRACTICE IN BUILDING STRUCTURE DESIGN
Y.Q. Zhang*, J.M. Ding and Z. Zhang

CORRELATION BETWEEN RANDOM LOCAL MECHANICAL PROPERTIES OF STRUCTURAL STEEL
A. Machowski, M. Maslak* and M. Pazdanowski

RESEARCH ON CALCULATION METHOD OF LOADED COMPRESSION MEMBER OF SINGLE-LIMB FIRE-CURVED EQUILATERAL DOUBLE SPLICING T-SHAPED ANGLE STEEL
X.D. Li*, Z.G. Fang, J.Q. Ye, D.H. Sun and W. Yao

ROTATIONAL STIFFNESS MODEL FOR SHALLOW EMBEDDED STEEL COLUMN BASES
X.X. Xu*, X.Z. Zhao and S. Yan

STUDY ON MECHANICAL PROPERTIES OF SIMPLIFIED STEEL FRAME MODEL WITH EXTERNAL WALL PANELS
Y.Z. Liu* and W.Y. Zhang

INTEGRATED DESIGN OPTIMIZATION FOR LONG SPAN STEEL TRANSFER TRUSS
AT REDEVELOPMENT OF HONG KONG KWONG WAH HOSPITAL
X.K. Zou, Y. Zhang, Y.P. Liu*, L.C. Shi and D. Kan

Direct Analysis

SECOND-ORDER DIRECT ANALYSIS FOR STEEL H-PILES ACCOUNTING FOR POST-DRIVING RESIDUAL STRESSES
W.H. Ouyang, L. Chen and S.W. Liu*

Fatigue

RECONSTRUCTION METHOD OF FATIGUE DAMAGE STATE OF IN-SERVICE STEEL BRIDGE WITHOUT LOAD INFORMATION
L.T. Da*, Q.H. Zhang, M.Z. Li and C. Cui

FATIGUE PERFORMANCE OF RIB-TO-DECK JOINTS STRENGTHENED WITH INTERNAL WELDING
M.Z. Li*, Q.H. Zhang, J. Li, L.T. Da and C. Cui

EXPERIMENTAL INVESTIGATION ON RESIDUAL STRESS DISTRIBUTION AND RELAXATION EFFECT AT DOUBLE-SIDE WELDED RIB-TO-DECK JOINTS OF ORTHOTROPIC STEEL DECKS
Y. Ma*, C. Cui, Q.H. Zhang and W.L. Lao

FATIGUE BEHAVIOUR OF TITANIUM-CLAD BIMETALLIC STEEL PLATE WITH DIFFERENT INTERFACIAL CONDITIONS

MECHANICAL PROPERTIES AND SIMULATION METHOD OF STRUCTURAL STEEL AFTER HIGH CYCLE FATIGUE DAMAGE
Q. Si, Y. Ding, L. Zong* and H. Liu

EXPERIMENTAL STUDY ON WELDING RESIDUAL STRESS OF TWO-WAY STIFFENED STEEL PLATES
Z. Shao, Y.X. Li, S.Y. Song, W.L. Jin, Y.Q. Liu*

Volume II

Fire
BENDING MECHANICAL PROPERTIES OF STEEL - WELDED HOLLOW SPHERICAL JOINTS AT HIGH TEMPERATURES 671
L. Wang, H.B. Liu*, H. Dong, and X.N. Liu

HIGH STRENGTH STEEL BEAM BEHAVIOR UNDER FIRE EXPOSURE CONSIDERING CREEP 685
H. Al-azzani*, W.Y. Wang and A. Sharhan

EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF GRADE 1670 STEEL WIRES AT AND AFTER ELEVATED TEMPERATURE 692

FINITE ELEMENT SIMULATION FOR ULTRA-HIGH-PERFORMANCE CONCRETE-FILLED DOUBLE-SKIN TUBES EXPOSED TO FIRE 707
A.H.A. Abdelrahman*, M. Ghannam, S. Lotfy, and M. AlHamaydeh

High-Strength Steel

EXPERIMENTAL INVESTIGATION OF RESIDUAL STRESS IN WELDED T-SECTION BY DOMESTIC Q460 HIGH STRENGTH S 720
X.L. Xiong*, F.R. Nkuchou, T. Wang, M. Ma and K. Du

CORROSION EFFECTS ON MECHANICAL PROPERTIES OF Q620 HIGH-STRENGTH STEEL 733
N. Wang, J.M. Hua, X.Y. Xue*, Q.Q. Huang, F. Wang

Impact and protection

TENSILE BEHAVIOR OF T-STUB SUBJECTED TO STATIC AND DYNAMIC LOADS 744
H. Huang, L.M. Ren, K. Chen, X.J. Li, L. Wang and B. Yang*

Intelligent Construction

APPLICATION OF HYDRAULIC SYNCHRONOUS LIFTING TECHNOLOGY IN CONSTRUCTION OF LONG-SPAN HYBRID STEEL STRUCTURES 754
M.L. Zhang*, W. Liu, Z. Lei, D.G. Wang, J.Y. Wang, L.Y. Zhou* and X.P. Shu

TESTING OF ADDITIVELY MANUFACTURED STAINLESS STEEL MATERIAL AND CROSS-SECTIONS 767
R.Z. Zhang*, L. Gardner and C. Buchanan

EMBODIED CARBON CALCULATION AND ASSESSMENT FOR STEEL STRUCTURE PROJECT 781
D. Chan, W. Sun and Y.Y. Wang*
COMPLETE SET CONSTRUCTION TECHNOLOGY OF LARGE OPENING CABLE DOME STRUCTURE BASED ON INTEGRATED
Y.Y. Shang*, Z.S. Xing, C.Q. Wu, F.S. Lu and B. Luo

COMPLETE SET ROTATION-LIFTING CONSTRUCTION TECHNOLOGY FOR FREE-FORM SURFACE ROOF STRUCTURES WITH LARGE ELEVATION DIFFERENCE
Z.S. Xing, S.R. Jia, Z.H. Zhang and D.C. Ye

New Materials

FINITE ELEMENT ANALYSIS ON BEHAVIOR OF HCFHST MIDDLE LONG COLUMNS WITH INNER I-SHAPED CFRP UNDER AXIAL LOAD
G.C. Li, R.Z. Li* and Z.J. Yang

STUDY ON THE MECHANICAL BEHAVIOR OF GFRP PLATE-CONE CYLINDRICAL RETICULATED SHELL
X. Wang, L. Chen, Y.H. Huang, F. Wang* and X. Zhang

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES AND OPTIMIZATION OF CHOPPED BASALT FIBER REINFORCED CONCRETE
Q. Liu, Z.X. Yu and R. Guo*

STUDY ON MECHANICAL PROPERTIES OF STAINLESS STEEL PLATE SHEAR WALL STRENGTHENED BY CORRUGATED FRP
Y.P. Du* and L. Zhong

DESIGN OF THE DEPLOYABLE-FOLDABLE ACTUATOR AND VIBRATION CONTROL DEVICE BASED ON THE SHAPE MEMORY ALLOYS WITH A TWO-WAY EFFECT
D. Song*, Y.J. Lu, and C.Q. Miao

Seismic Resistance

FEASIBILITY STUDY OF VISCOELASTIC HYBRID SELF-CENTERING BRACE (VSCB) FOR SEISMIC-RESISTANT STEEL FRAMES
Y.W. Ping, C. Fang* and Y.Y. Chen

TEST ON RESILIENCE CAPACITY OF SELF-CENTERING BUCKLING RESTRAINED BRACE WITH DISC SPRINGS

MECHANICAL PROPERTIES OF KINKED STEEL PLATES AND THEIR APPLICATIONS IN FRAME STRUCTURES
X.J. Yang, F. Lin* and C.P. Liu
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEISMIC COLLAPSE AND DEBRIS DISTRIBUTION OF STEEL FRAME STRUCTURES WITH INFILL WALLS</td>
<td>889</td>
</tr>
<tr>
<td>Z. Xu and F. Lin*</td>
<td></td>
</tr>
<tr>
<td>ANALYSIS OF TRANSIENT STRUCTURAL RESPONSES OF STEEL FRAMES WITH NON-SYMMETRIC SECTIONS UNDER EARTHQUAKE MOTION</td>
<td>899</td>
</tr>
<tr>
<td>W.L. Gao, L. Chen and S.W. Liu*</td>
<td></td>
</tr>
<tr>
<td>SEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION</td>
<td>911</td>
</tr>
<tr>
<td>T.L. Zhang and J.Y. Zhao*</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>LOCAL BUCKLING (WRINKLING) OF PROFILED METAL-FACED INSULATING SANDWICH PANELS - A PARAMETRIC STUDY</td>
<td>930</td>
</tr>
<tr>
<td>M.N. Tahir* and E. Hamed</td>
<td></td>
</tr>
<tr>
<td>COMPARATIVE STUDY ON STABILITY OF WELDED AND HOT-ROLLED Q420 L300×30 COLUMNS</td>
<td>938</td>
</tr>
<tr>
<td>A.P. Chou and G. Shi*</td>
<td></td>
</tr>
<tr>
<td>ELASTIC BUCKLING OF OUTSTAND STAINLESS-CLAD BIMETALLIC STEEL PLATES SUBJECTED TO UNIAXIAL COMPRESSION</td>
<td>946</td>
</tr>
<tr>
<td>Y.X. Mei* and H.Y. Ban</td>
<td></td>
</tr>
<tr>
<td>IMPERFECTION SENSITIVITY OF NON-TRIANGULATED CYLINDRICAL SHELL CONFIGURATIONS</td>
<td>955</td>
</tr>
<tr>
<td>R. Kolakkottol*, K.D. Tsavdaridis, and A.S. Jayachandran</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel</td>
<td></td>
</tr>
<tr>
<td>MATERIAL PROPERTIES AND LOCAL STABILITY OF WAAM STAINLESS STEEL PLATES WITH DIFFERENT DEPOSITION RATES</td>
<td>968</td>
</tr>
<tr>
<td>S.I. Evans* and J. Wang</td>
<td></td>
</tr>
<tr>
<td>A REEXAMINATION ON CALIBRATION OF CYCLIC CONSTITUTIVE MODEL FOR STRUCTURAL STEELS</td>
<td>980</td>
</tr>
<tr>
<td>FINITE ELEMENT MODELING OF CONCRETE-FILLED STAINLESS-CLAD BIMETALLIC STEEL SQUARE TUBES UNDER AXIAL COMPRESSION</td>
<td>992</td>
</tr>
<tr>
<td>Z.J. Chen*, H.Y. Ban, Y.Q. Wang</td>
<td></td>
</tr>
</tbody>
</table>
Structure Systems

INVESTIGATION OF CYCLIC BEHAVIOR OF FULL-SCALE TREE-LIKE HOLLOW STRUCTURAL SECTION COLUMNS WITH INFILLED CONCRETE
D. Gan*, Z.H. He, and H.H. Huang

ANALYSIS OF THE SEISMIC BEHAVIOR OF INNOVATIVE ALUMINIUM ALLOY ENERGY DISSIPATION BRACES
B. Jia*, Q.L. Zhang and T. Wu

SHAKING TABLE TEST OF NEW LIGHT STEEL STRUCTURE SYSTEM

Testing & Monitoring

THE CRACK DETECTION METHOD OF LONGITUDINAL RIB BUTT WELD OF STEEL BRIDGE BASED ON ULTRASONIC LAMB WAVE
D.K. Zhang*, Q.H. Zhang, C. Cui and S.J. Qiu

ON FIELD-MEASURED VERTICAL TEMPERATURE GRADIENT OF BOX GIRDER IN STEEL BRIDGES
Z.W. Zhu*, T. Qin, X.W. Chen
Preface

These proceedings contain the papers presented at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation—joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Cold-formed Steel, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue, Fire, High-Strength Steel, Impact and Protection, Intelligent Construction, New Material, Seismic Resistance, Stability, Stainless Steel, Structure Systems, Testing & Monitoring. The papers presented in these proceedings come from a wide range of countries/regions and will be a great reference source.

Specially, the subject matter has been categorized under the broad heading of:

Volume I: Keynotes Lectures, Assembled Structure, Bridge, Cold-Formed, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue

Each of the papers was subjected to stringent review by a panel of experts in the respective area. This peer review began with an assessment of the submitted abstracts and following this, authors were invited to submit their full manuscripts. Each manuscript was then carefully reviewed by relevant experts, and their recommendations on accepting, rejecting or modifying the submissions were strictly adhered to, before inclusion in the conference proceedings.
STUDY ON LOCAL BEARING CAPACITY OF COMPOSITE I-GIRDER WITH CONCRETE-FILLED TUBULAR FLANGE AND CORRUGATED WEB

Chengjia Wu¹, Lixia Deng¹* and Yongbo Shao¹

¹ School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
E-mails: 870528906@qq.com; lxjdeng@swpu.edu.cn; ybshao@swpu.edu.cn

Abstract: Experimental tests on three composite straight girders and three composite curved girders are carried out to study the local bearing capacity of new composite I-girders with concrete-filled tubular flange and corrugated web (IG-CFTF-CW). The failure modes and the load carrying capacity of the new composite girders under local compressive load are studied. Experimental results show that one of the new composite straight girders failed in web buckling and the other two failed in web yielding. All the three new composite curved girders failed in elastic buckling in the web. The concrete-filled tubular flange (CFTF) can effectively increase the effective bearing length of corrugated web (CW) and the lateral stiffness and the local bearing capacity of the composite girders.

Keywords: Composite curved girder; Composite straight girder; Concrete-filled tubular flange; Corrugated web; Local bearing capacity

DOI: 10.18057/ICASS2020.P.331

1 INTRODUCTION

Compared with traditional I-girders and I-girders with corrugated web (IG-CW), IG-CFTF-CW have good flexural performance [1,2,3], shear performance [4,5,6], local bearing performance [7], stability [1,8] and fatigue performance [9,10]. However, there are few studies on the local compressive performance of curved I-girder with concrete-filled tubular flange and corrugated web (CIG-CFTF-CW) [11]. This paper investigates the local compressive bearing capacity of the new composite girders, including composite straight girders and composite curved girders, by using experimental method.

2 EXPERIMENTAL TEST

2.1 Specimens design

Six specimens with a span of 1680mm are designed. Geometries of the specimens are shown in Fig. 1. SP1 and SP3 are new composite straight girders, while SP2 and SP4 are new composite curved girders. These four specimens are composed of top CFTF, CW and flat bottom flange. SP5 is a traditional straight IG-CW, and SP6 is a traditional curved I-girder with corrugated webs (CIG-CW). These two specimens are composed of flat top and bottom flanges and CW. Section dimensions and material properties are shown in Table 1 and 2, respectively. f_y, w and $f_y, tube$ in Table 1 are the yield strengths of the web material and of the steel tube material, respectively. The grouting material is high strength cement, and the measured compressive strength is 62.7MPa.
Table 1: Geometric dimensions and material properties of specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Corrugation type</th>
<th>(L) (mm)</th>
<th>(H) (mm)</th>
<th>(b_t) (mm)</th>
<th>(h_a) (mm)</th>
<th>(t_a) (mm)</th>
<th>(h_w) (mm)</th>
<th>(t_w) (mm)</th>
<th>(t_t) (mm)</th>
<th>(L/R) (Rad)</th>
<th>(f_{y,w}) (MPa)</th>
<th>(f_{y,\text{tube}}) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>1</td>
<td>1680</td>
<td>666</td>
<td>120</td>
<td>60</td>
<td>3</td>
<td>600</td>
<td>1.9</td>
<td>6</td>
<td>0</td>
<td>323</td>
<td>372</td>
</tr>
<tr>
<td>SP2</td>
<td>1</td>
<td>1680</td>
<td>666</td>
<td>120</td>
<td>60</td>
<td>3</td>
<td>600</td>
<td>1.9</td>
<td>6</td>
<td>0.3</td>
<td>256</td>
<td>372</td>
</tr>
<tr>
<td>SP3</td>
<td>2</td>
<td>1680</td>
<td>666</td>
<td>120</td>
<td>60</td>
<td>3</td>
<td>600</td>
<td>1.9</td>
<td>6</td>
<td>0</td>
<td>323</td>
<td>372</td>
</tr>
<tr>
<td>SP4</td>
<td>2</td>
<td>1680</td>
<td>666</td>
<td>120</td>
<td>60</td>
<td>3</td>
<td>600</td>
<td>1.9</td>
<td>6</td>
<td>0.3</td>
<td>323</td>
<td>372</td>
</tr>
<tr>
<td>SP5</td>
<td>1</td>
<td>1680</td>
<td>616</td>
<td>120</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>1.9</td>
<td>8</td>
<td>0</td>
<td>288</td>
<td>315</td>
</tr>
<tr>
<td>SP6</td>
<td>1</td>
<td>1680</td>
<td>616</td>
<td>120</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>1.9</td>
<td>8</td>
<td>0.3</td>
<td>323</td>
<td>323</td>
</tr>
</tbody>
</table>

Table 2: Geometric dimensions of corrugated web

<table>
<thead>
<tr>
<th>Corrugation type</th>
<th>(b) (mm)</th>
<th>(d) (mm)</th>
<th>(h_t) (mm)</th>
<th>(q) (mm)</th>
<th>(\theta) (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>50</td>
<td>50</td>
<td>240</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>90</td>
<td>50</td>
<td>420</td>
<td>29</td>
</tr>
</tbody>
</table>

2.2 Test setup

The MTS hydraulic servo loading system are used to apply the concentrate load. As shown in Fig. 2, the lateral displacements of the specimens at the two ends are restricted by using two U-shaped supports. The longitudinal displacement of the specimen at the mid-height is constrained at one end by four short bars welded on the two columns of the U-shaped support. A steel block is installed between the MTS actuator and the top flange of the girder (the loading length is \(C=120\text{mm} \)).

Fig. 2: Test setup
3 TEST RESULT ANALYSES

3.1 Failure mode

For the six specimens, the failure modes are all local compressive failure of the corrugated web in the region below the corrugated web/top RGTF connection, as shown in Fig. 3. The length of the failure region in the web of the four new composite girders (i.e., SP1, SP2, SP3 and SP4) are much larger than that of the two traditional composite girders (i.e., SP5 and SP6). This indicates that the CFTF can increase the effective bearing length in the web whether for the straight girders or for the curved girders.

![Fig. 3: Failure modes of specimens](image)

3.2 Strain analysis

The strain development at some critical positions on the specimens is monitored from strain gauges. Fig. 4 and Fig. 5 show the compressive strain distribution along the web length of SP1 and SP2 under different loading levels. It is found that the strains at same location in side A and in side B are found in Figs. 4(a)~4(b) to be approximately same in elastic stage, which indicates that web buckling does not occur in SP1 before failure. In Figs. 5(a)~5(b), the compressive strain at location 4 in side A (same location 11 in side B) is smaller than the corresponding strain at location 11 with same load, which indicates that flexural deformation occurs in location 4 (location 11) at elastic stage, and web buckling occurs in this location. Using this method of analysis, the failure mode of all the specimen can be determined. As listed in Table 3, SP1 and SP5 failed in web yielding while the other four specimen failed in web elastic buckling. Therefore, the initial curvature and the waveform shape have influence on the failure mode of the composite girders.

![Fig. 4: Compressive strain distribution and development in the web of SP1](image)
Three strain rosettes are placed uniformly along the web height at the 1/4 span for each specimen, and the load-shear strain curves can be obtained, as shown in Fig. 6. From the curves, it is found that shear failure occurs only in the web of SP2, while no shear failure occurs in the other specimens. For the curved girder SP2, the shear stress increases rapidly due to large out-of-plane flexural and torsional deformation after the load exceeds 225kN. For the straight girder SP1, there is only shear stress in the web and shear failure does not occur. Therefore, it can be concluded that initial curvature has influence on the shear resistance of the web.

Normal strains of the bottom plate flange at 1/4 span and at mid-span for the specimens are obtained. From load-normal strain curves of all the specimens, it is found that the bottom flanges of all the specimens are in elastic states except position 48 in the bottom flange of SP2. Due to the complex stress state of coupled in-plane bending, out-of-plane bending and torsional...
deformation, the strain in position 48 in SP2 exceeds the yield strength when the load exceeds 200kN, as shown in Fig. 7.

Normal strains of the top CFTF at the side close to the curvature center (the number is in red font in Fig. 8) and at the side away from the curvature center (the number is in blue font in Fig. 8) are obtained. It is found that for the top CFTFs of the two new composite curved girders (SP2 and SP4), the side close to the curvature center is in compression while the side away from the curvature center is in tension, which is produced due to from the out-of-plane bending and torsion of the specimens.

3.3 Load-displacement curves analysis

The load-vertical displacement curves of the 6 specimens are shown in Fig. 9. The vertical displacement is measured from the LVDTs placed on the top flanges at mid-span. From the load-displacement curves, the ultimate loads of specimens are obtained and listed in Table 3. The four new composite girders have much higher load carrying capacity compared to the two conventional flat plate flange girders.

The load-lateral displacement curves of the three composite curved girders are shown in Fig. 10. The lateral displacement is measured from the LVDTs placed horizontally on the two sides of the top flanges at mid-span. It is found from Fig. 10 that the lateral stiffnesses of the two new composite curved girders are much larger than that of the conventional flat plate flange curved girders.

![Fig. 9: Load-vertical displacement curves of specimens](image1)

![Fig. 10: Load-lateral displacement curves of the three curved girders](image2)

Table 3: Comparison of load carrying capacity and web failure modes between specimens

<table>
<thead>
<tr>
<th>Specimens</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SP5</th>
<th>SP6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate bearing capacity (kN)</td>
<td>278</td>
<td>235</td>
<td>206</td>
<td>201</td>
<td>106</td>
<td>118</td>
</tr>
<tr>
<td>Web failure modes</td>
<td>Web yielding</td>
<td>Web elastic buckling</td>
<td>Web shear yield</td>
<td>Web elastic buckling</td>
<td>Web bottom flange yielding</td>
<td>Web elastic buckling</td>
</tr>
</tbody>
</table>

4 CONCLUSIONS

(1) CFTF increases the effective bearing length of the corrugated web. Therefore, CFTF increases greatly the local bearing capacity of the new composite girders with CW. For the three composite curved girders, the lateral stiffnesses of SP2 and SP4 are much larger than that of SP6. That is because the CFTF has larger torsional stiffness than flat plate flange.
(2) For the new composite curved girder specimen SP2, the web firstly failed in local bearing zone at load of 160kN, then the bottom flange began to yield at load of about 200kN, which followed by the shear failure of the web at the ultimate load of 235kN. This phenomenon indicates that if appropriate waveform is selected, the girder will not lose its bearing capacity immediately even if the local bearing failure occurs in the web.

(3) The web waveform shape and initial curvature have significant affection on the failure mode of the new composite girders. The composite straight girders with waveform 1 (i.e., SP1 and SP5) failed in web yielding while other four girders failed in web elastic buckling.

(4) The effect of initial curvature on the local bearing capacity can be ignored if the initial curvature is smaller than the engineering limit. Although SP3 is a straight girder while SP4 is a curved girder with the initial curvature of 0.3, but they almost have the same carrying capacity.

REFERENCES

These proceedings contain the papers at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation - joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Structure Systems, Composite, Connections, Design & Analysis, Direct Analysis, New Material, Fatigue, Cold-formed Steel, Intelligent Construction, Seismic Resistance, Green Construction, Corrosion, Fracture, Collapse, Fire, High-Strength Steel, Stability, Stainless Steel, Testing & Monitoring, Impact and Protection. The papers presented in these proceedings come from a wide range of countries/regions and will be a great reference source.

Volume I:
- Keynotes Lectures
- Assembled Structure
- Bridge
- Cold-Formed
- Composite
- Connections
- Corrosion, Fracture & Collapse
- Design & Analysis
- Direct Analysis
- Fatigue

Volume II:
- Fire
- High-Strength Steel
- Impact and Protection
- Intelligent Construction
- New Materials
- Seismic Resistance
- Stability
- Stainless Steel
- Structure Systems
- Testing & Monitoring