ICASS’ 2020

THE TENTH INTERNATIONAL CONFERENCE ON
ADVANCES IN STEEL STRUCTURES

21-23 August 2022—Chengdu, China

Edited by

Siu-Lai Chan
Zhi-Xiang Yu

Volume II

PUBLISHED BY
HONG KONG INSTITUTE OF STEEL CONSTRUCTION LIMITED.
Advances in Steel Structures (ICASS 2020)

Edited by

Siu-Lai Chan
Department of Civil and Environment Engineering, The Hong Kong Polytechnic University

Zhi-Xiang Yu
School of Civil Engineering, Southwest Jiaotong University

Published by
Hong Kong Institute of Steel Construction Limited
Table of Contents

Preface \hspace{2cm} XI

Volume I

Keynote Lectures

SEISMIC DESIGN AND ANALYSIS OF STEEL PANEL DAMPERS FOR STEEL FRAME BUILDINGS
K.C. Tsai and C.H. Hsu \hspace{2cm} 2

THE CONTINUOUS STRENGTH METHOD - REVIEW AND OUTLOOK
L. Gardner, X. Yun and F. Walport \hspace{2cm} 15

Assembled Structure

A NEW TYPE OF ASSEMBLED THERMAL INSULATION DECORATIVE WALL SYSTEM FIRE RESISTANCE STUDY
C.L. Wang, S.R. Jiang, B.C. Li and S. Li \hspace{2cm} 28

RESEARCH ON SEISMIC BEHAVIOR OF ASSEMBLED BEAM-COLUMN JOINTS WITH C-SHAPED CANTILEVER SECTION
H.C. Guo, Y. Xie, J.B. Tian*, Y.H. Liu, and Z.S. Wang \hspace{2cm} 38

EXPERIMENTAL STUDY AND NUMERICAL ANALYSIS ON SEISMIC BEHAVIOR OF ASSEMBLED BEAM-COLUMN JOINTS WITH C-SHAPED CANTILEVER SECTION
H.C. Guo, Y. Xie, J.B. Tian*, Y.H. Liu and Z.S. Wang \hspace{2cm} 59

RESEARCH ON DYNAMIC LOAD CARRYING CAPACITY OF ASSEMBLED INTERNAL STIFFENING WIND TURBINE TOWER BASED ON MULTI-SCALE MODELING
F.W. Wang, K.M. Zhou and S.T. Ke \hspace{2cm} 82

Bridge

SOUND RADIATION OF ORTHOTROPIC STEEL DECKS SUBJECTED TO MOVING VEHICLE LOADS
Y.C. You and X. Zhang \hspace{2cm} 93

POWER FLOW ANALYSIS OF BRIDGE U-RIB STIFFENED PLATES BASED ON THE CONCEPT OF STRUCTURAL INTENSITY
D.R. Kong and X. Zhang \hspace{2cm} 102
VIBRO-ACOUSTICAL PERFORMANCE OF A STEEL BEAM OF GROOVE PROFILE: FIELD TEST AND NUMERICAL ANALYSIS
Z.Q. Liu and X. Zhang*

PERFORMANCE OPTIMIZATION OF A STEEL-UHPC COMPOSITE ORTHOTROPIC BRIDGE WITH INTELLIGENT ALGORITHM
Z. Xiang*, Z.W. Zhu, J.Y. Cai and J.P. Li

LOAD-CARRYING CAPACITY OF DAMAGED STEEL GIRDER
E. Yamaguchi*, T. Amamoto, D. Nakashima and K. Shiraishi

Cold-Formed

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF STRAW BALE
H.S. Sun, B.Z. Cao*, Z.H. Chen

A SURROGATE MODEL TO ESTIMATE THE AXIAL COMRESSIVE CAPACITY OF COLD-FORMED STEEL OPEN BUILT-UP SECTIONS
S.R. Kho*, A.L.Y. Ng, D.T.W. Looi

LOCAL BUCKLING BEHAVIORS OF COLD-FORMED CIRCULAR HOLLOW SECTIONS HIGH STRENGTH STEEL STUB COLUMNS BASED ON A HIGH-FIDELITY NUMERICAL MODEL
C. Yang, L. Ying* and Y.N. Zhao

BEHAVIOR OF WEB PERFORATED COLD-FORMED STEEL BEAMS UNDER COMBINED BENDING AND SHEAR ACTION
L.P. Wang*, J. Li, X.X. Cao and H.B. Wang

OVERHANG EFFECT ON WEB CRIPPLING CAPACITY OF COLD-FORMED AUSTENITIC STAINLESS STEEL SHS MEMBERS: AN EXPERIMENTAL STUDY
K.J. Zhan, C. Chen, Y. Cai and H.T. Li*

Composite

CALCULATION METHOD OF ULTIMATE LOAD BEARING CAPACITY OF CONCRETE FILLED STEEL TUBULAR LATTICE COLUMNS
J.J. Qi*, X. Hu, W.B. Zhou, W.H. Shi and Z. Huang

AXIAL COMPRESSION BEHAVIOR OF SQUARE THIN-WALLED CFST COLUMN TO RC BEAM JOINTS
D. GAN*, Z.X. Zhao, X.H. Zhou and Z. Zhou*
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERICAL SIMULATION ANALYSIS OF TEMPERATURE FIELD OF BOX-TYPE COMPOSITE WALL</td>
<td>248</td>
</tr>
<tr>
<td>Q.Q. He, R. Li, C. Xue, T. Lan and G.C. Qin</td>
<td></td>
</tr>
<tr>
<td>THERMO-MECHANICAL COUPLING RESPONSE ANALYSIS OF THE BOX-PLATE PREFABRICATED STEEL STRUCTURE UNDER FIRE</td>
<td>261</td>
</tr>
<tr>
<td>C. Xue, R. Li, G.C. Qin and T. Lan*</td>
<td></td>
</tr>
<tr>
<td>STUDY ON FIRE RESISTANCE OF BOX-TYPE COMPOSITE WALL</td>
<td>273</td>
</tr>
<tr>
<td>Y.Q. Fu, Q.Q. He, G.C. Qin, T. Lan* and R. Li</td>
<td></td>
</tr>
<tr>
<td>NUMERICAL SIMULATION AND RESEARCH ON WELDING RESIDUAL STRESS OF BOX-TYPE STEEL STRUCTURE</td>
<td>285</td>
</tr>
<tr>
<td>R. X. Gao, Men J.J., Lan T* and Li. R</td>
<td></td>
</tr>
<tr>
<td>STUDY ON SHEAR BEHAVIOR OF BOX – TYPE STEEL STRUCTURE CONSIDERING WELDING EFFECT</td>
<td>293</td>
</tr>
<tr>
<td>S. Wang, C. Xue, T. Lan* and J.J. Men</td>
<td></td>
</tr>
<tr>
<td>STUDY ON LOCAL BEARING CAPACITY OF COMPOSITE I-GIRDER WITH CONCRETE-FILLED TUBULAR FLANGE AND CORRUGATED WEB</td>
<td>303</td>
</tr>
<tr>
<td>C.J. Wu, L.X. Deng* and Y.B. Shao</td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE OF STUD SHEAR CONNECTIONS IN COMPOSITE SLABS WITH VARIOUS CONFIGURATIONS</td>
<td>309</td>
</tr>
<tr>
<td>M.H. Shen, K.F. Chung* and X.D. Wang</td>
<td></td>
</tr>
<tr>
<td>STUDY OF INITIAL IMPERFECTION OF CONCRETE-FILLED CIRCULAR STEEL TUBE COLUMNS FOR DIRECT ANALYSIS</td>
<td>318</td>
</tr>
<tr>
<td>Z.J. Zhang, J.L. Xing, Y.P. Liu* and G.C. Li</td>
<td></td>
</tr>
<tr>
<td>Connections</td>
<td></td>
</tr>
<tr>
<td>SEISMIC PERFORMANCE OF THREE-DIMENSIONAL STEEL BEAM-COLUMN CONNECTIONS</td>
<td>328</td>
</tr>
<tr>
<td>Y.L. Xu*, Y.F. Shang and Y.X. Su</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENTAL STUDY ON TRUSS TYPE STEEL REINFORCED CONCRETE JOINTS</td>
<td>337</td>
</tr>
<tr>
<td>T. Chen*, X.L. Gu, W.R. Fu, Q.H. Huang and B. Peng</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENTAL INVESTIGATION ON THE STRUCTURAL BEHAVIOR OF CORRODED SELF-DRILLING SCREW CONNECTIONS IN COLD-FORMED STEEL STRUCTURES</td>
<td>348</td>
</tr>
</tbody>
</table>
ULTIMATE STRENGTH, DUCTILITY AND FAILURE MODE OF HIGH-STRENGTH FRICTIONAL BOLTED JOINTS MADE OF HIGH STRENGTH STEEL
Z.C. Qin*, H. Moriyama, T. Yamaguchi, M. Shigeishi, Y. Xing and A. Hashimoto

EXPERIMENTAL STUDY ON BOLTED CONNECTIONS IN COLD-ROLLED ALUMINIUM PORTAL FRAMES
H.C. Nguyen and C.H. Pham*

EXPERIMENTAL STUDY ON BEHAVIOR OF THE GUSSET-PLATE JOINT OF ALUMINUM ALLOY PORTAL FRAME
J. Liu*, X.N. Guo and Y.F. Luo

PARAMETRIC STUDIES ON SCF DISTRIBUTION OF THREE-PLANAR TUBULAR Y-JOINTS UNDER IN-PLANE BENDING MOMENT
S.L. Bao*, Y.T. Tai, Y. Tian, X.Y. Zhao and R.N. Li

PARAMETRIC STUDIES ON THE MOMENT RESISTANT BEAM-COLUMN CONNECTION BEHAVIOR OF CONCRETE FILLED DOUBLE STEEL TUBULAR COLUMNS AND I STEEL BEAMS
M. Sulthana*, T. Supritha

LOAD TRANSFER MECHANISM OF STEEL GIRDER-RC PIER CONNECTION IN COMPOSITE RIGID-FRAME BRIDGE
H.X. Liu*, Xianlin Wang, Mao Feng Yu, Binqiang Guo and Yuqing Li

COMPARISON OF MECHANICAL BEHAVIOR BETWEEN LONGITUDINAL LAP-WELDED JOINTS AND TRANSVERSE FILLET WELDED JOINTS OF HIGH STRENGTH STEEL
S.H. Jiang, M.M. Ran*, F. Xiong and Y.C. Zhong

STUDY ON THE STATIC BEHAVIOR OF COLD-FORMED STEEL FABRICATED BEAM-COLUMN JOINT
L.P. Wang*, A. Abubakar B* and J. Li

NUMERICAL STUDY OF THE PRELOAD FORCE LOSS OF CORRODED HIGH-STRENGTH BOLTS
Y. Jin, X. Zhang and Z.Y. Kong*

Corrosion, Fracture & Collapse

ANTI-WIND CAPACITY CHECK AND COLLAPSES ANALYSIS OF EXISTING TRANSMISSION TOWER
W.T. Zhang*, Y.Q. Xiao, C. Li and Q.X. Zheng
DYNAMIC ANALYSIS OF LONG-SPAN TRANSMISSION TOWER-LINE SYSTEM UNDER DOWNBURST

D.K. Zhang*, H.Z. Deng and X.Y. Hu

APPLICATION RESEARCH OF V CONTAINING HIGH STRENGTH WEATHERING STEEL IN STEEL STRUCTURE BUILDING

Z.R. Li*, K.Y. Cui, C.W. Wang and S. Chen

EFFECT OF VARIOUS BOUNDARY CONSTRAINTS ON THE COLLAPSE BEHAVIOR OF MULTI-STORY COMPOSITE FRAMES

Z. Tan, W.H. Zhang*, X.Y. Song, B. Meng, C.F. Li, and S.C. Duan

Design & Analysis

STRENGTHENING DESIGN AND MECHANICAL BEHAVIOR ANALYSIS OF THE MAIN STRUCTURE FOR AN INDUSTRIAL WORKSHOP WHEN EQUIPMENT CHANGED

B. Jiang*, L. Jiang, S.C. Sang, Y.Y. Li, Y.G. Wu

ENHANCEMENT OF ANTI-COLLAPSE CAPACITY OF STEEL FRAME WITH OPENINGS IN BEAM WEB

B. Meng*, W.H. Zhong and J.P. Hao

INNOVATION AND PRACTICE IN BUILDING STRUCTURE DESIGN

Y.Q. Zhang*, J.M. Ding and Z. Zhang

CORRELATION BETWEEN RANDOM LOCAL MECHANICAL PROPERTIES OF STRUCTURAL STEEL

A. Machowski, M. Maslak* and M. Pazdanowski

RESEARCH ON CALCULATION METHOD OF LOADED COMPRESSION MEMBER OF SINGLE-LIMB FIRE-CURVED EQUILATERAL DOUBLE SPLICING T-SHAPED ANGLE STEEL

X.D. Li*, Z.G. Fang, J.Q. Ye, D.H. Sun and W. Yao

ROTATIONAL STIFFNESS MODEL FOR SHALLOW EMBEDDED STEEL COLUMN BASES

X.X. Xu*, X.Z. Zhao and S. Yan

STUDY ON MECHANICAL PROPERTIES OF SIMPLIFIED STEEL FRAME MODEL WITH EXTERNAL WALL PANELS

Y.Z. Liu* and W.Y. Zhang

INTEGRATED DESIGN OPTIMIZATION FOR LONG SPAN STEEL TRANSFER TRUSS
Direct Analysis

SECOND-ORDER DIRECT ANALYSIS FOR STEEL H-PILEs ACCOUNTING FOR POST-DRIVING RESIDUAL STRESSES
W.H. Ouyang, L. Chen and S.W. Liu

Fatigue

RECONSTRUCTION METHOD OF FATIGUE DAMAGE STATE OF IN-SERVICE STEEL BRIDGE WITHOUT LOAD INFORMATION
L.T. Da, Q.H. Zhang, M.Z. Li and C. Cui

FATIGUE PERFORMANCE OF RIB-TO-DECK JOINTS STRENGTHENED WITH INTERNAL WELDING
M.Z. Li, Q.H. Zhang, J. Li, L.T. Da and C. Cui

EXPERIMENTAL INVESTIGATION ON RESIDUAL STRESS DISTRIBUTION AND RELAXATION EFFECT AT DOUBLE-SIDE WELDED RIB-TO-DECK JOINTS OF ORTHOTROPIC STEEL DECKS
Y. Ma, C. Cui, Q.H. Zhang and W.L. Lao

FATIGUE BEHAVIOUR OF TITANIUM-CLAD BIMETALLIC STEEL PLATE WITH DIFFERENT INTERFACIAL CONDITIONS
C.Y. Huang, H.Y. Ban, L.T. Hai and Y.J. Shi

MECHANICAL PROPERTIES AND SIMULATION METHOD OF STRUCTURAL STEEL AFTER HIGH CYCLE FATIGUE DAMAGE
Q. Si, Y. Ding, L. Zong and *H. Liu*

EXPERIMENTAL STUDY ON WELDING RESIDUAL STRESS OF TWO-WAY STIFFENED STEEL PLATES
Z. Shao, Y.X. Li, S.Y. Song, W.L. Jin, Y.Q. Liu

Volume II

Fire
BENDING MECHANICAL PROPERTIES OF STEEL - WELDED HOLLOW SPHERICAL JOINTS AT HIGH TEMPERATURES
L. Wang, H.B. Liu*, H. Dong, and X.N. Liu

HIGH STRENGTH STEEL BEAM BEHAVIOR UNDER FIRE EXPOSURE CONSIDERING CREEP
H. Al-azzani*, W.Y. Wang and A. Sharhan

EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF GRADE 1670 STEEL WIRES AT AND AFTER ELEVATED TEMPERATURE

FINITE ELEMENT SIMULATION FOR ULTRA-HIGH-PERFORMANCE CONCRETE-FILLED DOUBLE-SKIN TUBES EXPOSED TO FIRE
A.H.A. Abdelrahman*, M. Ghannam, S. Lofly, and M. AlHamaydeh

High-Strength Steel

EXPERIMENTAL INVESTIGATION OF RESIDUAL STRESS IN WELDED T-SECTION BY DOMESTIC Q460 HIGH STRENGTH S
X.L. Xiong*, F.R. Nkuichou, T. Wang, M. Ma and K. Du

CORROSION EFFECTS ON MECHANICAL PROPERTIES OF Q620 HIGH-STRENGTH STEEL
N. Wang, J.M. Hua, X.Y. Xue*, Q.Q. Huang, F. Wang

Impact and protection

TENSILE BEHAVIOR OF T-STUB SUBJECTED TO STATIC AND DYNAMIC LOADS
H. Huang, L.M. Ren, K. Chen, X.J. Li, L. Wang and B. Yang*

Intelligent Construction

APPLICATION OF HYDRAULIC SYNCHRONOUS LIFTING TECHNOLOGY IN CONSTRUCTION OF LONG-SPAN HYBRID STEEL STRUCTURES
M.L. Zhang*, W. Liu, Z. Lei, D.G. Wang, J.Y. Wang, L.Y. Zhou* and X.P. Shu

TESTING OF ADDITIVELY MANUFACTURED STAINLESS STEEL MATERIAL AND CROSS-SECTIONS
R.Z. Zhang*, L. Gardner and C. Buchanan

EMBODIED CARBON CALCULATION AND ASSESSMENT FOR STEEL STRUCTURE PROJECT
D. Chan, W. Sun and Y.Y. Wang*
COMPLETE SET CONSTRUCTION TECHNOLOGY OF LARGE OPENING CABLE DOME STRUCTURE BASED ON INTEGRATED
Y.Y. Shang*, Z.S Xing, C.Q. Wu, F.S. Lu and B. Luo 790

COMPLETE SET ROTATION-LIFTING CONSTRUCTION TECHNOLOGY FOR FREE-FORM SURFACE ROOF STRUCTURES WITH LARGE ELEVATION DIFFERENCE
Z.S. Xing, S.R. Jia, Z.H. Zhang and D.C. Ye 798

New Materials

FINITE ELEMENT ANALYSIS ON BEHAVIOR OF HCFHST MIDDLE LONG COLUMNS WITH INNER I-SHAPED CFRP UNDER AXIAL LOAD
G.C. Li, R.Z. Li* and Z.J. Yang 809

STUDY ON THE MECHANICAL BEHAVIOR OF GFRP PLATE-CONE CYLINDRICAL RETICULATED SHELL
X. Wang, L. Chen, Y.H. Huang, F. Wang* and X. Zhang 819

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES AND OPTIMIZATION OF CHOPPED BASALT FIBER REINFORCED CONCRETE
Q. Liu, Z.X. Yu and R. Guo* 831

STUDY ON MECHANICAL PROPERTIES OF STAINLESS STEEL PLATE SHEAR WALL STRENGTHENED BY CORRUGATED FRP
Y.P. Du* and L. Zhong 840

DESIGN OF THE DEPLOYABLE-FOLDABLE ACTUATOR AND VIBRATION CONTROL DEVICE BASED ON THE SHAPE MEMORY ALLOYS WITH A TWO-WAY EFFECT
D. Song*, Y.J. Lu, and C.Q. Miao 848

Seismic Resistance

FEASIBILITY STUDY OF VISCOELASTIC HYBRID SELF-CENTERING BRACE (VSCB) FOR SEISMIC-RESISTANT STEEL FRAMES
Y.W. Ping, C. Fang* and Y.Y. Chen 857

TEST ON RESILIENCE CAPACITY OF SELF-CENTERING BUCKLING REstrained BRACE WITH DISC SPRINGS

MECHANICAL PROPERTIES OF KINKED STEEL PLATES AND THEIR APPLICATIONS IN FRAME STRUCTURES
X.J. Yang, F. Lin* and C.P. Liu 877
SEISMIC COLLAPSE AND DEBRIS DISTRIBUTION OF STEEL FRAME STRUCTURES WITH INFILL WALLS
Z. Xu and F. Lin*

ANALYSIS OF TRANSIENT STRUCTURAL RESPONSES OF STEEL FRAMES WITH NON-SYMMETRIC SECTIONS UNDER EARTHQUAKE MOTION
W.L. Gao, L. Chen and S.W. Liu*

SEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION
T.L. Zhang and J.Y. Zhao*

Stability

LOCAL BUCKLING (WRINKLING) OF PROFILED METAL-FACED INSULATING SANDWICH PANELS - A PARAMETRIC STUDY
M.N. Tahir* and E. Hamed

COMPARATIVE STUDY ON STABILITY OF WELDED AND HOT-ROLLED Q420 L300×30 COLUMNS
A.P. Chou and G. Shi*

ELASTIC BUCKLING OF OUTSTAND STAINLESS-CLAD BIMETALLIC STEEL PLATES SUBJECTED TO UNIAXIAL COMPRESSION
Y.X. Mei* and H.Y. Ban

IMPERFECTION SENSITIVITY OF NON-TRIANGULATED CYLINDRICAL SHELL CONFIGURATIONS
R. Kolakkattol*, K.D. Tsavdaridis, and A.S. Jayachandran

Stainless Steel

MATERIAL PROPERTIES AND LOCAL STABILITY OF WAAM STAINLESS STEEL PLATES WITH DIFFERENT DEPOSITION RATES
S.I. Evans* and J. Wang

A REEXAMINATION ON CALIBRATION OF CYCLIC CONSTITUTIVE MODEL FOR STRUCTURAL STEELS

FINITE ELEMENT MODELING OF CONCRETE-FILLED STAINLESS-CLAD BIMETALLIC STEEL SQUARE TUBES UNDER AXIAL COMPRESSION
Z.J. Chen*, H.Y. Ban, Y.Q. Wang
Structure Systems

INVESTIGATION OF CYCLIC BEHAVIOR OF FULL-SCALE TREE-LIKE HOLLOW STRUCTURAL SECTION COLUMNS WITH INFILLED CONCRETE
D. Gan*, Z.H. He, and H.H. Huang

ANALYSIS OF THE SEISMIC BEHAVIOR OF INNOVATIVE ALUMINIUM ALLOY ENERGY DISSIPATION BRACES
B. Jia*, Q.L. Zhang and T. Wu

SHAKING TABLE TEST OF NEW LIGHT STEEL STRUCTURE SYSTEM

Testing & Monitoring

THE CRACK DETECTION METHOD OF LONGITUDINAL RIB BUTT WELD OF STEEL BRIDGE BASED ON ULTRASONIC LAMB WAVE
D.K. Zhang*, Q.H. Zhang, C. Cui and S.J. Qiu

ON FIELD-MEASURED VERTICAL TEMPERATURE GRADIENT OF BOX GIRDER IN STEEL BRIDGES
Z.W. Zhu*, T. Qin, X.W. Chen
Preface

These proceedings contain the papers presented at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation—joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Cold-formed Steel, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue, Fire, High-Strength Steel, Impact and Protection, Intelligent Construction, New Material, Seismic Resistance, Stability, Stainless Steel, Structure Systems, Testing & Monitoring. The papers presented in these proceedings come from a wide range of countries/ regions and will be a great reference source.

Specially, the subject matter has been categorized under the broad heading of:

Volume I: Keynotes Lectures, Assembled Structure, Bridge, Cold-Formed, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue

Each of the papers was subjected to stringent review by a panel of experts in the respective area. This peer review began with an assessment of the submitted abstracts and following this, authors were invited to submit their full manuscripts. Each manuscript was then carefully reviewed by relevant experts, and their recommendations on accepting, rejecting or modifying the submissions were strictly adhered to, before inclusion in the conference proceedings.
TENSILE BEHAVIOR OF T-STUB SUBJECTED TO STATIC AND DYNAMIC LOADS

H. Huang 1, L.M. Ren 1, K. Chen 1, X.J. Li 2, L. Wang 3 and B. Yang 1*

1 School of Civil Engineering, Chongqing University, Chongqing 400045, China
E-mails: 201916021033@cqu.edu.cn, renlm@cqu.edu.cn, chen0429@cqu.edu.cn, yang0206@cqu.edu.cn

2 Chongqing Monorail Transit Engineering Co. Ltd, Chongqing 400081, China
E-mail: 179798594@qq.com

3 Citic Heavy Industries Co. LTD, Henan 471039, China
E-mail: wl6286200@163.com

Abstract: To study the tensile behavior of T-stubs with various design parameters under different loading scenarios, uniaxial static and dynamic tensile tests were carried out. The effects of flange thickness, bolt preload, bolt strength and loading conditions were discussed. The failure modes observed under different conditions were presented. Besides, the load-displacement response was analyzed in detail. The experimental results showed that the bolt preload only affected the initial stiffness of the specimens, and smaller flange thickness and lower bolt strength would result in unfavorable performance of T-stubs. Under dynamic loading scenarios, the test specimens showed greater resistance but limited deformation capacity compared to the static ones. Furthermore, it was observed that the ductility would be seriously reduced if brittle failure, such as bolt or weld fracture occurred which is recommended to be avoided in structural design.

Keywords: T-stub; Tensile behavior; Static and dynamic test; Failure mode

DOI: 10.18057/ICASS2020.P.313

1 INTRODUCTION

Design of beam-column connections in steel structures is crucial to effectively resisting applied loads. The steel connections mainly include rigid, semi-rigid and simple connections. Semi-rigid connections are widely used in practice because of their advantages including strong plastic deformation capacity, convenient installation, clear force transmission and etc. At present, bolted end plate connections are one of the most popular semi-rigid connection types recommended by many steel structure specifications.

Equivalent T-stub is an essential mechanical component of the end plate connections. The current European Code for the design of steel structures (EN 1993-1-8:2004[1]) recommends a component-based modeling approach for steel connection design. Since the component-based method was introduced into EC3 in 1992, it has been widely used to study different mechanical behaviors of steel connections. The fundamental process is mainly divided into three steps: (1) Splitting the connection and determining the equivalent size of effective mechanical components; (2) Analyzing the mechanical behavior (stiffness, load-bearing capacity) of each component; (3) Combining the initial stiffness and load-bearing capacity of all the components to obtain those properties of the whole connection.
In recent years, with the development component-based modeling approach, it has been gradually used in different connection types and loading conditions. Swanson et al. [2,3] and Coelho et al. [4,5] carried out uniaxial static tensile tests on T-stubs with various design parameters such as section size, bolt diameter, hole spacing and they pointed out the influence of different design parameters on the mechanical properties of T-stubs. Piluso et al. [6,7] confirmed three failure modes of T-stubs through static tensile tests and proposed a four-fold line model for predicting the load-displacement response. Besides the tests carried out at room temperature, some high-temperature tests about the component-based modeling approach have also been conducted by Both et al. [8]. They determined the relationship between temperature and mechanical properties of components through test results. Ribeiro et al. [9,10] investigated the influence of dynamic load on T-stubs through a novel device and found that loading time was critical to T-stub performance. Zhao et al. [11] proposed a correction factor for EC3, which can accurately predict the design plastic bearing capacity of the T-stub made of S690 steel.

With the continuous development of the steel connections, research on their basic components also gradually developed. In the past few decades, most of the mechanical properties of the components have been studied under monotonic, static and cyclic loading conditions. Many researchers have proposed suggestions to improve the current standards, but there is little information about the mechanical properties of components under dynamic load. The comparison between the dynamic and static conditions is even less. However, the connections are often damaged by dynamic loads when the structure is subjected to accidental loads, such as fire, explosion, impact and etc. Thus, this paper intends to investigate mechanical properties of component T-stub under dynamic load emphasizing on the difference of static and dynamic loading conditions. T-stubs with different design parameters were tested by a static tensile testing machine, while corresponding specimens were tested by a novel dynamic apparatus. Both the load-displacement curves and failure modes of the test specimens were presented. Specifically, the initial stiffness, load resistance and plastic stage behavior were analyzed.

2 TEST METHODOLOGY

In this test, the T-stub specimen was taken from the extended end plate connection of a typical 6-story steel frame commercial building, as shown in Figure 1.

![Figure 1: Extended end plate connection of the prototype structure](image-url)
2.1 Static test

In order to study the influence of different design parameters on the mechanical properties of T-stubs, 5 groups of test specimens were designed, as shown in Figure 2. The detailed design parameters are shown in Table 1, where \(t_f \) is the flange thickness and \(P \) is the bolt preload. The web and flange of T-stubs were made of Q355 hot-rolled steel plate. Fillet welds of 8mm thickness were used to connect and flange. The diameters of all the bolts used in the T-stubs were 20mm. The material properties of steels and bolts are given in Tables 2 and 3.

![Figure 2: Geometry characteristics of a T-stub in static tests](image)

(a) Front view (b) Top view

Table 1: Design parameters of specimens in static tests

<table>
<thead>
<tr>
<th>Specimen</th>
<th>(t_f)(mm)</th>
<th>Bolt grade</th>
<th>(P)(kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-F12-B10.9-P150</td>
<td>12</td>
<td>10.9S</td>
<td>150</td>
</tr>
<tr>
<td>S-F10-B10.9-P150</td>
<td>10</td>
<td>10.9S</td>
<td>150</td>
</tr>
<tr>
<td>S-F12-B10.9-P0</td>
<td>12</td>
<td>10.9S</td>
<td>150</td>
</tr>
<tr>
<td>S-F12-B8.8-P125</td>
<td>12</td>
<td>8.8</td>
<td>125</td>
</tr>
<tr>
<td>S-F12-B12.9-P175</td>
<td>12</td>
<td>12.9</td>
<td>175</td>
</tr>
</tbody>
</table>

Table 2: Mechanical properties of steels

<table>
<thead>
<tr>
<th>Sample location</th>
<th>Thickness (T)(mm)</th>
<th>Elastic modulus (E)(GPa)</th>
<th>Yield stress (f_y)(MPa)</th>
<th>Ultimate stress (f_u)(MPa)</th>
<th>Tensile elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam flange</td>
<td>9</td>
<td>206</td>
<td>359</td>
<td>525</td>
<td>35</td>
</tr>
<tr>
<td>End plate</td>
<td>10</td>
<td>207</td>
<td>370</td>
<td>502</td>
<td>38</td>
</tr>
<tr>
<td>End plate</td>
<td>12</td>
<td>205</td>
<td>388</td>
<td>487</td>
<td>33</td>
</tr>
<tr>
<td>End plate</td>
<td>14</td>
<td>210</td>
<td>384</td>
<td>533</td>
<td>33.5</td>
</tr>
</tbody>
</table>

Table 3: Mechanical properties of high-strength bolts

<table>
<thead>
<tr>
<th>Steel grade</th>
<th>Yield stress (f_y)(MPa)</th>
<th>Ultimate stress (f_u)(MPa)</th>
<th>Tensile strain (\varepsilon_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>711</td>
<td>867</td>
<td>0.14</td>
</tr>
<tr>
<td>10.9S</td>
<td>1140</td>
<td>1216</td>
<td>0.12</td>
</tr>
<tr>
<td>12.9</td>
<td>1152</td>
<td>1306</td>
<td>0.12</td>
</tr>
</tbody>
</table>

The quasi-static tests of T-stubs were carried out on a 60t testing machine at Chongqing University, as shown in Figure 3. In the test, it was assumed that the other side of the test specimen was a rigid body. Thus, a thick T-stub was designed to ensure that it would not deform during the whole loading process, which was also used in the dynamic test. The testing machine could clamp the web of the test specimen through the fixture. During installation, the test
specimens were vertically centered to ensure that the two webs were aligned in the same straight line.

(a) Testing machine (b) Test setup

Figure 3: Static test setup

The test process was divided into two stages. The first stage was preloading: after arranging all instrumentations, applying a tensile force of 10% yield load to the test specimen and then reducing it to zero, ensuring the measured data changed linearly. The second stage was formal loading: the displacement control loading was applied on the test specimen until the specimen totally failed, for instance flange fracture and bolt failure occurred. The displacement of the rigid T-stub was measured by dial indicators, which were used to represent the flange deformation. The tensile force could be recorded by the testing machine.

2.2 Dynamic test

Five groups of dynamic specimens were designed to be compared with the static test. The geometry characteristics of T-stubs are shown in Figure 4, and the design parameters of various specimens are shown in Table 4, where \(t_f \) is the flange thickness and \(P \) is the bolt preload.

(a) Front view (b) Top view (c) Side view

Figure 4: Geometry characteristics of a T-stub in dynamic tests

<table>
<thead>
<tr>
<th>Specimen</th>
<th>(t_f (\text{mm}))</th>
<th>Bolt grade</th>
<th>(P (\text{kN}))</th>
</tr>
</thead>
</table>

Table 4: Design parameters of specimens in dynamic tests
The static tensile test machine was not applicable for the dynamic test so that a novel dynamic loading device was designed as shown in Figure 5. Different from the static test specimens, the webs of T-stubs were lengthened, and three screw holes were drilled on them to connect with the loading device.

Before the test, the hand chain block was used to pull the clump weight from the ground to the design falling height. Then two electromagnets were placed at the adsorption position corresponding to the clump weight and energized. At this time, the clump weight had been sucked up by the electromagnet through the magnetic force, so the hand chain block could be removed carefully. After installing all the measuring equipment, the electromagnet was turned off so that the clump weight began to fall freely after losing magnetic adsorption. The gravitational potential energy was converted into kinetic energy. When the clump weight passed the designed falling height, the steel wire rope bore force. Meanwhile, the kinetic energy of the clump weight was transferred to the specimen at the other end to achieve the effect of dynamic load. In the test, the falling height was 3m and the mass of the clump weight was 800kg. The vertical load and displacement of the thick T-stub were measured by the load sensors and laser displacement sensors, respectively.

For the sake of safety, rubber pads and wood beams were placed on the ground below the clump weight, avoiding the clump weight or the test T-stub falling off accidentally. Another safety steel wire rope was also set to connect the end of the rigid T-stub to prevent it from falling off the ground after the failure of the test specimen.

3 TEST RESULT

3.1 Failure modes

Owing to the different design parameters and load forms, the test T-stubs showed various failure modes. In the static group, specimen S-F12-B10.9-P150 failed in a mixed mode, that is...
yield failure near the weld toe accompanied by bolt fracture, as illustrated in Figure 6a. Yield failure of flange near weld toe and bolt hole was observed for specimen S-F10-B10.9-P150, as shown in Figure 6b. Specimen S-F12-B10.9-P0 showed the same failure mode as specimen S-F12-B10.9-P150 (see Figure 6c). Micro yield cracking at the weld toe with bolt fracture were observed for both specimen S-F12-B8.8-P125 and specimen S-F12-B12.9-P175 as shown in Figures 6d and 6e. In the dynamic group, specimen D-F12-B10.9-P150 was not completely damaged after the first loading, but obvious weld toe yielding and bolt bending deformation were observed (Figure 6f). For specimen D-F10-B10.9-P150, the bolts deformed slightly, while the weld toe and flange near the bolt hole had severe yield failure, as shown in Figure 6g. The nut sliding thread occurred in specimen D-F12-B10.9-P0 (see Figure 6h), which is unconventional damage and should be avoided. Failure modes of specimens D-F12-B8.8-P125 and D-F12-B12.9-P175 were bolt failure, as shown in Figures 6i and 6j.
3.2 Load-displacement characteristic

Figure 7 shows the load-displacement curves under static and dynamic conditions and the comparison between them.

In the static test, it can be seen that the applied preload had little effect on the peak load and ultimate displacement. The maximum load of specimen S-F12-B10.9-P150 was 420kN, 0.007% lower than the one without preload. One bolt of specimens S-F12-B10.9-P150 and S-F12-B10.9-P0 fractured when the displacement reached 36.8mm and 39mm, respectively, with a difference of 6%. Nevertheless, a significant reduction in initial stiffness was observed if the preload was not applied. Reducing the flange thickness not only changed the failure mode but also decreased the maximum load-bearing capacity and ductility. The maximum load and displacement of specimen S-F10-B10.9-P150 were 297kN and 27mm, 41% and 36% lower than that of specimen S-F12-B10.9-P150, respectively. Similarly, the maximum load of specimen S-F12-B8.8-P125 was 291kN, 44.3% lower than that of specimen S-F12-B10.9-P150, which adopted 10.9S high strength bolts. The ultimate displacement of specimen S-F12-B8.8-P125 was 30mm, which was also 22.7% smaller compared with specimen S-F12-B10.9-P150. It is worth noting that the load-displacement curve of specimen S-F12-B12.9-P175 was not as high as expected, and the maximum load was 334kN, 25.7% less than specimen S-F12-B10.9-P150. Besides, the ultimate displacement was only 20.8 mm for this specimen, 77% less than that of specimen S-F12-B10.9-P150.

In dynamic tests, each specimen had experienced one impact except for specimen D-F12-B10.9-P150, which did not fail completely after the first impact. It can be seen from Figure 7 that the specimens without bolt fracture had better ductility and could absorb more energy. The occurrence of bolt fracture seriously reduced the deformation capacity of T-stubs. Besides, specimens with bolt fracture reached the ultimate displacement at the maximum force. However,
the same phenomenon was not observed in the specimens with flange failure. The maximum load of specimen D-F12-B10.9-P150 was 494kN, 33.6% larger than that of specimen 2-F10 (328kN). Meanwhile, the peak load of test specimens D-F12-B8.8-P125 and D-F12-B12.9-P175 were 346kN and 376kN, respectively, 42.8% and 23.4% less than that of specimen D-F12-B10.9-P150.

Through the comparison of the load-displacement curves of dynamic and static tests (since D-F12-B10.9-P0 showed an abnormal failure mode, it was not included in the comparison), it was obvious that the impact action resulted in a significant improvement of the initial stiffness of the specimen. If the bolt did not fail prematurely, the maximum load in the dynamic test appeared before the limit displacement, which was entirely different from the static test. The maximum loads of specimens D-F12-B10.9-P150, D-F10-B10.9-P150, D-F12-B8.8-P125 and D-F12-B12.9-P175 were 15%, 9.8%, 15.9% and 11.1% higher than that of corresponding static test specimens, respectively. In completely destroyed specimens, the ultimate displacement of specimen D-F10-B10.9-P150 with flange failure was 26mm, 10% different from that of specimen S-F10-B10.9-P150. Specimens D-F12-B8.8-P125 and D-F12-B12.9-P175 had the ultimate displacements of 2mm and 3.1mm, respectively, which were 1400% and 500% smaller than the corresponding static ones.

4 CONCLUSION

Based on two different loading methods (static and dynamic loading), the axial tensile behavior of T-stubs with various design parameters was studied, and the following conclusions can be drawn:

(1) In the static test, bolt fracture should be avoided until the deformation of the flange developed sufficiently. Preload could improve the initial stiffness of the specimen, but did not affect the ultimate resistance and displacement.

(2) In the dynamic test, it was observed that the energy absorption capacity of T-stubs would be seriously reduced if weld or bolt damage occurred. Thus, these two failure modes should be avoided in practice.

(3) The test T-stubs showed higher load-bearing capacity under dynamic load, but the ductility had been severely weakened. In addition, failure of specimens under static loading required more energy than that of dynamic ones, which indicated that the dynamic effect would weaken the tensile behavior of the specimen.

ACKNOWLEDGMENTS

This work is supported by Development of hydraulic pile hammer for offshore operation under Project MC-202014-S01.

REFERENCES

These proceedings contain the papers at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation - joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Structure Systems, Composite, Connections, Design & Analysis, Direct Analysis, New Material, Fatigue, Cold-formed Steel, Intelligent Construction, Seismic Resistance, Green Construction, Corrosion, Fracture, Collapse, Fire, High-Strength Steel, Stability, Stainless Steel, Testing & Monitoring, Impact and Protection. The papers presented in these proceedings come from a wide range of countries/regions and will be a great reference source.

Volume I:
- Keynotes Lectures
- Assembled Structure
- Bridge
- Cold-Formed
- Composite
- Connections
- Corrosion, Fracture & Collapse
- Design & Analysis
- Direct Analysis
- Fatigue

Volume II:
- Fire
- High-Strength Steel
- Impact and Protection
- Intelligent Construction
- New Materials
- Seismic Resistance
- Stability
- Stainless Steel
- Structure Systems
- Testing & Monitoring