Advances in Steel Structures (ICASS 2020)

Edited by

Siu-Lai Chan
Department of Civil and Environment Engineering, The Hong Kong Polytechnic University

Zhi-Xiang Yu
School of Civil Engineering, Southwest Jiaotong University

Published by
Hong Kong Institute of Steel Construction Limited
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>XI</td>
</tr>
<tr>
<td>Volume I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keynote Lectures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEISMIC DESIGN AND ANALYSIS OF STEEL PANEL DAMPERS FOR STEEL FRAME BUILDINGS</td>
<td>K.C. Tsai* and C.H. Hsu</td>
<td>2</td>
</tr>
<tr>
<td>THE CONTINUOUS STRENGTH METHOD - REVIEW AND OUTLOOK</td>
<td>L. Gardner*, X. Yun and F. Walport</td>
<td>15</td>
</tr>
<tr>
<td>Assembled Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A NEW TYPE OF ASSEMBLED THERMAL INSULATION DECORATIVE WALL SYSTEM FIRE RESISTANCE STUDY</td>
<td>C.L. Wang*, S.R. Jiang, B.C. Li and S. Li</td>
<td>28</td>
</tr>
<tr>
<td>RESEARCH ON SEISMIC BEHAVIOR OF ASSEMBLED BEAM-COLUMN JOINTS WITH C-SHAPED CANTILEVER SECTION</td>
<td>H.C. Guo*, Y. Xie, J.B. Tian*, Y.H. Liu, and Z.S. Wang</td>
<td>38</td>
</tr>
<tr>
<td>RESEARCH ON DYNAMIC LOAD CARRYING CAPACITY OF ASSEMBLED INTERNAL STIFFENING WIND TURBINE TOWER BASED ON MULTI-SCALE MODELING</td>
<td>F.W. Wang*, K.M. Zhou and S.T. Ke</td>
<td>82</td>
</tr>
<tr>
<td>Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUND RADIATION OF ORTHOTROPIC STEEL DECKS SUBJECTED TO MOVING VEHICLE LOADS</td>
<td>Y.C. You and X. Zhang*</td>
<td>93</td>
</tr>
<tr>
<td>POWER FLOW ANALYSIS OF BRIDGE U-RIB STIFFENED PLATES BASED ON THE CONCEPT OF STRUCTURAL INTENSITY</td>
<td>D.R. Kong and X. Zhang*</td>
<td>102</td>
</tr>
</tbody>
</table>
VIBRO-ACOUSTICAL PERFORMANCE OF A STEEL BEAM OF GROOVE PROFILE: FIELD TEST AND NUMERICAL ANALYSIS
Z.Q. Liu and X. Zhang

PERFORMANCE OPTIMIZATION OF A STEEL-UHPC COMPOSITE ORTHOTROPIC BRIDGE WITH INTELLIGENT ALGORITHM
Z. Xiang*, Z.W. Zhu, J.Y. Cai and J.P. Li

LOAD-CARRYING CAPACITY OF DAMAGED STEEL GIRDER
E. Yamaguchi*, T. Amamoto, D. Nakashima and K. Shiraishi

Cold-Formed

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF STRAW BALE
H.S. Sun, B.Z. Cao*, Z.H. Chen

A SURROGATE MODEL TO ESTIMATE THE AXIAL COMPRESSIVE CAPACITY OF COLD-FORMED STEEL OPEN BUILT-UP SECTIONS
S.R. Kho*, A.L.Y. Ng, D.T.W. Looi

LOCAL BUCKLING BEHAVIORS OF COLD-FORMED CIRCULAR HOLLOW SECTIONS HIGH STRENGTH STEEL STUB COLUMNS BASED ON A HIGH-FIDELITY NUMERICAL MODEL
C. Yang, L. Ying* and Y.N. Zhao

BEHAVIOR OF WEB PERFORATED COLD-FORMED STEEL BEAMS UNDER COMBINED BENDING AND SHEAR ACTION
L.P. Wang*, J. Li, X.X. Cao and H.B. Wang

OVERHANG EFFECT ON WEB CRIPLPING CAPACITY OF COLD-FORMED AUSTENITIC STAINLESS STEEL SHS MEMBERS: AN EXPERIMENTAL STUDY
K.J. Zhan, C. Chen, Y. Cai and H.T. Li*

Composite

CALCULATION METHOD OF ULTIMATE LOAD BEARING CAPACITY OF CONCRETE FILLED STEEL TUBULAR LATTICE COLUMNS
J.J. Qi*, X. Hu, W.B. Zhou, W.H. Shi and Z. Huang

AXIAL COMPRESSION BEHAVIOR OF SQUARE THIN-WALLED CFST COLUMN TO RC BEAM JOINTS
D. GAN*, Z.X. Zhao, X.H. Zhou and Z. Zhou*
NUMERICAL SIMULATION ANALYSIS OF TEMPERATURE FIELD OF BOX-TYPE COMPOSITE WALL
Q.Q. He, R. Li, C. Xue, T. Lan and G.C. Qin

THERMO-MECHANICAL COUPLING RESPONSE ANALYSIS OF THE BOX-PLATE PREFABRICATED STEEL STRUCTURE UNDER FIRE
C. Xue, R. Li, G.C. Qin and T. Lan*

STUDY ON FIRE RESISTANCE OF BOX-TYPE COMPOSITE WALLS
Y.Q. Fu, Q.Q. He, G.C. Qin, T. Lan* and R. Li

NUMERICAL SIMULATION AND RESEARCH ON WELDING RESIDUAL STRESS OF BOX-TYPE STEEL STRUCTURE
R. X. Gao, Men J. J., Lan T* and Li. R

STUDY ON SHEAR BEHAVIOR OF BOX-TYPE STEEL STRUCTURE CONSIDERING WELDING EFFECT
S. Wang, C. Xue, T. Lan* and J.J. Men

STUDY ON LOCAL BEARING CAPACITY OF COMPOSITE I-GIRDER WITH CONCRETE-FILLED TUBULAR FLANGE AND CORRUGATED WEB
C.J. Wu, L.X. Deng* and Y.B. Shao

PERFORMANCE OF STUD SHEAR CONNECTIONS IN COMPOSITE SLABS WITH VARIOUS CONFIGURATIONS
M.H. Shen, K.F. Chung* and X.D. Wang

STUDY OF INITIAL IMPERFECTION OF CONCRETE-FILLED CIRCULAR STEEL TUBE COLUMNS FOR DIRECT ANALYSIS
Z.J. Zhang, J.L. Xing, Y.P. Liu* and G.C. Li

Connections

SEISMIC PERFORMANCE OF THREE-DIMENSIONAL STEEL BEAM-COLUMN CONNECTIONS
Y.L. Xu*, Y.F. Shang and Y.X. Su

EXPERIMENTAL STUDY ON TRUSS TYPE STEEL REINFORCED CONCRETE JOINTS
T. Chen*, X.L. Gu, W.R. Fu, Q.H. Huang and B. Peng

EXPERIMENTAL INVESTIGATION ON THE STRUCTURAL BEHAVIOR OF CORRODED SELF-DRILLING SCREW CONNECTIONS IN COLD-FORMED STEEL STRUCTURES
ULTIMATE STRENGTH, DUCTILITY AND FAILURE MODE OF HIGH-STRENGTH FRICTIONAL BOLTED JOINTS MADE OF HIGH STRENGTH STEEL
Z.C. Qin*, H. Moriyama, T. Yamaguchi, M. Shigeishi, Y. Xing and A. Hashimoto

EXPERIMENTAL STUDY ON BOLTED CONNECTIONS IN COLD-ROLLED ALUMINIUM PORTAL FRAMES
H.C. Nguyen and C.H. Pham*

EXPERIMENTAL STUDY ON BEHAVIOR OF THE GUSSET-PLATE JOINT OF ALUMINUM ALLOY PORTAL FRAME
J. Liu*, X.N. Guo and Y.F. Luo

PARAMETRIC STUDIES ON SCF DISTRIBUTION OF THREE-PLANAR TUBULAR Y-JOINTS UNDER IN-PLANE BENDING MOMENT
S.L. Bao*, Y.T. Tai, Y. Tian, X.Y. Zhao and R.N. Li

PARAMETRIC STUDIES ON THE MOMENT RESISTANT BEAM-COLUMN CONNECTION BEHAVIOR OF CONCRETE FILLED DOUBLE STEEL TUBULAR COLUMNS AND I STEEL BEAMS
M. Sulthana*, T. Supritha

LOAD TRANSFER MECHANISM OF STEEL GIRDER-RC PIER CONNECTION IN COMPOSITE RIGID-FRAME BRIDGE
H.X. Liu*, Xianlin Wang, Maocheng Yu, Binjiang Guo and Yuqing Li

COMPARISON OF MECHANICAL BEHAVIOR BETWEEN LONGITUDINAL LAP-WELDED JOINTS AND TRANSVERSE FILLET WELDED JOINTS OF HIGH STRENGTH STEEL
S.H. Jiang, M.M. Ran*, F. Xiong and Y.C. Zhong

STUDY ON THE STATIC BEHAVIOR OF COLD-FORMED STEEL FABRICATED BEAM-COLUMN JOINT
L.P. Wang*, A. Abubakar B* and J. Li

NUMERICAL STUDY OF THE PRELOAD FORCE LOSS OF CORRODED HIGH-STRENGTH BOLTS
Y. Jin, X. Zhang and Z.Y. Kong*

Corrosion, Fracture & Collapse

ANTI-WIND CAPACITY CHECK AND COLLAPSES ANALYSIS OF EXISTING TRANSMISSION TOWER
W.T. Zhang*, Y.Q. Xiao, C. Li and Q.X. Zheng
DYNAMIC ANALYSIS OF LONG-SPAN TRANSMISSION TOWER-LINE SYSTEM UNDER DOWNBURST
D.K. Zhang*, H.Z. Deng and X.Y. Hu

APPLICATION RESEARCH OF V CONTAINING HIGH STRENGTH WEATHERING STEEL IN STEEL STRUCTURE BUILDING
Z.R. Li*, K.Y. Cui, C.W. Wang and S. Chen

EFFECT OF VARIOUS BOUNDARY CONSTRAINTS ON THE COLLAPSE BEHAVIOR OF MULTI-STORY COMPOSITE FRAMES
Z. Tan, W.H. Zhang*, X.Y. Song, B. Meng, C.F. Li, and S.C. Duan

Design & Analysis

STRENGTHENING DESIGN AND MECHANICAL BEHAVIOR ANALYSIS OF THE MAIN STRUCTURE FOR AN INDUSTRIAL WORKSHOP WHEN EQUIPMENT CHANGED
B. Jiang*, L. Jiang, S.C. Sang, Y.Y. Li, Y.G. Wu

ENHANCEMENT OF ANTI-COLLAPSE CAPACITY OF STEEL FRAME WITH OPENINGS IN BEAM WEB
B. Meng*, W.H. Zhong and J.P. Hao

INNOVATION AND PRACTICE IN BUILDING STRUCTURE DESIGN
Y.Q. Zhang*, J.M. Ding and Z. Zhang

CORRELATION BETWEEN RANDOM LOCAL MECHANICAL PROPERTIES OF STRUCTURAL STEEL
A. Machowski, M. Maslak* and M. Pazdanowski

RESEARCH ON CALCULATION METHOD OF LOADED COMPRESSION MEMBER OF SINGLE-LIMB FIRE-CURVED EQUILATERAL DOUBLE SPLICING T-SHAPED ANGLE STEEL
X.D. Li*, Z.G. Fang, J.Q. Ye, D.H. Sun and W. Yao

ROTATIONAL STIFFNESS MODEL FOR SHALLOW EMBEDDED STEEL COLUMN BASES
X.X. Xu*, X.Z. Zhao and S. Yan

STUDY ON MECHANICAL PROPERTIES OF SIMPLIFIED STEEL FRAME MODEL WITH EXTERNAL WALL PANELS
Y.Z. Liu* and W.Y. Zhang

INTEGRATED DESIGN OPTIMIZATION FOR LONG SPAN STEEL TRANSFER TRUSS

5
AT REDEVELOPMENT OF HONG KONG KWONG WAH HOSPITAL
X.K. Zou, Y. Zhang, Y.P. Liu*, L.C. Shi and D. Kan

Direct Analysis

SECOND-ORDER DIRECT ANALYSIS FOR STEEL H-PILES ACCOUNTING FOR POST-DRIVING RESIDUAL STRESSES
W.H. Ouyang, L. Chen and S.W. Liu*

Fatigue

RECONSTRUCTION METHOD OF FATIGUE DAMAGE STATE OF IN-SERVICE STEEL BRIDGE WITHOUT LOAD INFORMATION
L.T. Da*, Q.H. Zhang, M.Z. Li and C. Cui

FATIGUE PERFORMANCE OF RIB-TO-DECK JOINTS STRENGTHENED WITH INTERNAL WELDING
M.Z. Li*, Q.H. Zhang, J. Li, L.T. Da and C. Cui

EXPERIMENTAL INVESTIGATION ON RESIDUAL STRESS DISTRIBUTION AND RELAXATION EFFECT AT DOUBLE-SIDE WELDED RIB-TO-DECK JOINTS OF ORTHOTROPIC STEEL DECKS
Y. Ma*, C. Cui, Q.H. Zhang and W.L. Lao

FATIGUE BEHAVIOUR OF TITANIUM-CLAD BIMETALLIC STEEL PLATE WITH DIFFERENT INTERFACIAL CONDITIONS

MECHANICAL PROPERTIES AND SIMULATION METHOD OF STRUCTURAL STEEL AFTER HIGH CYCLE FATIGUE DAMAGE
Q. Si, Y. Ding, L. Zong* and H. Liu

EXPERIMENTAL STUDY ON WELDING RESIDUAL STRESS OF TWO-WAY STIFFENED STEEL PLATES
Z. Shao, Y.X. Li, S.Y. Song, W.L. Jin, Y.Q. Liu*

Volume II

Fire
BENDING MECHANICAL PROPERTIES OF STEEL – WELDED HOLLOW SPHERICAL JOINTS AT HIGH TEMPERATURES
L. Wang, H.B. Liu*, H. Dong, and X.N. Liu

HIGH STRENGTH STEEL BEAM BEHAVIOR UNDER FIRE EXPOSURE CONSIDERING CREEP
H. Al-azzani*, W.Y. Wang and A. Sharhan

EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF GRADE 1670 STEEL WIRES AT AND AFTER ELEVATED TEMPERATURE

FINITE ELEMENT SIMULATION FOR ULTRA-HIGH-PERFORMANCE CONCRETE-FILLED DOUBLE-SKIN TUBES EXPOSED TO FIRE
A.H.A. Abdelrahman*, M. Ghannam, S. Lotfy, and M. AlHamaydeh

High-Strength Steel
EXPERIMENTAL INVESTIGATION OF RESIDUAL STRESS IN WELDED T-SECTION BY DOMESTIC Q460 HIGH STRENGTH S
X.L. Xiong*, F.R. Nkuichou, T. Wang, M. Ma and K. Du

CORROSION EFFECTS ON MECHANICAL PROPERTIES OF Q620 HIGH-STRENGTH STEEL
N. Wang, J.M. Hua, X.Y. Xue*, Q.Q. Huang, F. Wang

Impact and protection
TENSILE BEHAVIOR OF T-STUB SUBJECTED TO STATIC AND DYNAMIC LOADS
H. Huang, L.M. Ren, K. Chen, X.J. Li, L. Wang and B. Yang

Intelligent Construction
APPLICATION OF HYDRAULIC SYNCHRONOUS LIFTING TECHNOLOGY IN CONSTRUCTION OF LONG-SPAN HYBRID STEEL STRUCTURES
M.L. Zhang*, W. Liu, Z. Lei, D.G. Wang, J.Y. Wang, L.Y. Zhou* and X.P. Shu

TESTING OF ADDITIVELY MANUFACTURED STAINLESS STEEL MATERIAL AND CROSS-SECTIONS
R.Z. Zhang*, L. Gardner and C. Buchanan

EMBODIED CARBON CALCULATION AND ASSESSMENT FOR STEEL STRUCTURE PROJECT
D. Chan, W. Sun and Y.Y. Wang*
COMPLETE SET CONSTRUCTION TECHNOLOGY OF LARGE OPENING CABLE DOME STRUCTURE BASED ON INTEGRATED
Y.Y. Shang*, Z.S Xing, C.Q. Wu, F.S. Lu and B. Luo

COMPLETE SET ROTATION-LIFTING CONSTRUCTION TECHNOLOGY FOR FREE-FORM SURFACE ROOF STRUCTURES WITH LARGE ELEVATION DIFFERENCE
Z.S. Xing, S.R. Jia, Z.H. Zhang and D.C. Ye

New Materials

FINITE ELEMENT ANALYSIS ON BEHAVIOR OF HCFHST MIDDLE LONG COLUMNS WITH INNER I-SHAPED CFRP UNDER AXIAL LOAD
G.C. Li, R.Z. Li* and Z.J. Yang

STUDY ON THE MECHANICAL BEHAVIOR OF GFRP PLATE-CONE CYLINDRICAL RETICULATED SHELL
X. Wang, L. Chen, Y.H. Huang, F. Wang* and X. Zhang

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES AND OPTIMIZATION OF CHOPPED BASALT FIBER REINFORCED CONCRETE
Q. Liu, Z.X. Yu and R. Guo*

STUDY ON MECHANICAL PROPERTIES OF STAINLESS STEEL PLATE SHEAR WALL STRENGTHENED BY CORRUGATED FRP
Y.P. Du* and L. Zhong

DESIGN OF THE DEPLOYABLE-FOLDABLE ACTUATOR AND VIBRATION CONTROL DEVICE BASED ON THE SHAPE MEMORY ALLOYS WITH A TWO-WAY EFFECT
D. Song*, Y.J. Lu, and C.Q. Miao

Seismic Resistance

FEASIBILITY STUDY OF VISCOELASTIC HYBRID SELF-CENTERING BRACE (VSCB) FOR SEISMIC-RESISTANT STEEL FRAMES
Y.W. Ping, C. Fang* and Y.Y. Chen

TEST ON RESILIENCE CAPACITY OF SELF-CENTERING BUCKLING RESTRAINED BRACE WITH DISC SPRINGS

MECHANICAL PROPERTIES OF KINKED STEEL PLATES AND THEIR APPLICATIONS IN FRAME STRUCTURES
X.J. Yang, F. Lin* and C.P. Liu
SEISMIC COLLAPSE AND DEBRIS DISTRIBUTION OF STEEL FRAME STRUCTURES WITH INFILL WALLS
Z. Xu and F. Lin*

ANALYSIS OF TRANSIENT STRUCTURAL RESPONSES OF STEEL FRAMES WITH NON-SYMMETRIC SECTIONS UNDER EARTHQUAKE MOTION
W.L. Gao, L. Chen and S.W. Liu*

SEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION
T.L. Zhang and J.Y. Zhao*

Stability

LOCAL BUCKLING (WRINKLING) OF PROFILED METAL-FACED INSULATING SANDWICH PANELS - A PARAMETRIC STUDY
M.N. Tahir* and E. Hamed

COMPARATIVE STUDY ON STABILITY OF WELDED AND HOT-ROLLED Q420 L300×30 COLUMNS
A.P. Chou and G. Shi*

ELASTIC BUCKLING OF OUTSTAND STAINLESS-CLAD BIMETALLIC STEEL PLATES SUBJECTED TO UNIAXIAL COMPRESSION
Y.X. Mei* and H.Y. Ban

IMPERFECTION SENSITIVITY OF NON-TRIANGULATED CYLINDRICAL SHELL CONFIGURATIONS
R. Kolakkattol*, K.D. Tsavdaridis, and A.S. Jayachandran

Stainless Steel

MATERIAL PROPERTIES AND LOCAL STABILITY OF WAAM STAINLESS STEEL PLATES WITH DIFFERENT DEPOSITION RATES
S.I. Evans* and J. Wang

A REEXAMINATION ON CALIBRATION OF CYCLIC CONSTITUTIVE MODEL FOR STRUCTURAL STEELS

FINITE ELEMENT MODELING OF CONCRETE-FILLED STAINLESS-CLAD BIMETALLIC STEEL SQUARE TUBES UNDER AXIAL COMPRESSION
Z.J. Chen*, H.Y. Ban, Y.Q. Wang
Structure Systems

INVESTIGATION OF CYCLIC BEHAVIOR OF FULL-SCALE TREE-LIKE HOLLOW STRUCTURAL SECTION COLUMNS WITH INFILLED CONCRETE
D. Gan*, Z.H. He, and H.H. Huang

ANALYSIS OF THE SEISMIC BEHAVIOR OF INNOVATIVE ALUMINIUM ALLOY ENERGY DISSIPATION BRACES
B. Jia*, Q.L. Zhang and T. Wu

SHAKING TABLE TEST OF NEW LIGHT STEEL STRUCTURE SYSTEM

Testing & Monitoring

THE CRACK DETECTION METHOD OF LONGITUDINAL RIB BUTT WELD OF STEEL BRIDGE BASED ON ULTRASONIC LAMB WAVE
D.K. Zhang*, Q.H. Zhang, C. Cui and S.J. Qiu

ON FIELD-MEASURED VERTICAL TEMPERATURE GRADIENT OF BOX GIRDER IN STEEL BRIDGES
Z.W. Zhu*, T. Qin, X.W. Chen
Preface

These proceedings contain the papers presented at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation—joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Cold-formed Steel, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue, Fire, High-Strength Steel, Impact and Protection, Intelligent Construction, New Material, Seismic Resistance, Stability, Stainless Steel, Structure Systems, Testing & Monitoring. The papers presented in these proceedings come from a wide range of countries/regions and will be a great reference source.

Specially, the subject matter has been categorized under the broad heading of:

Volume I: Keynotes Lectures, Assembled Structure, Bridge, Cold-Formed, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue

Each of the papers was subjected to stringent review by a panel of experts in the respective area. This peer review began with an assessment of the submitted abstracts and following this, authors were invited to submit their full manuscripts. Each manuscript was then carefully reviewed by relevant experts, and their recommendations on accepting, rejecting or modifying the submissions were strictly adhered to, before inclusion in the conference proceedings.
SEISMIC PERFORMANCE OF SPATIAL STEEL BEAM-COLUMN CONNECTIONS

Y.L. Xu¹,²*, Y.F. Shang³ and Y.X. Su³

¹School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an, China
²Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi’an, China
³School of Civil Engineering, Chang’an University, Xi’an, China

E-mail: xuyinglu@xauat.edu.cn; 1072810450@qq.com; 972077817@qq.com

Abstract: This paper presents a finite element analysis for spatial beam-column connections in steel frame to better understand the structural behavior of spatial connections. After the simulation and validation of experimental results, a total of 7 refined 3D models, including beam-to-column connections at different positions in the steel frame, were created and analyzed cyclically through the nonlinear finite element program ABAQUS to investigate the spatial coupling effect. The moment-rotation relationships and TI index distribution across the width of beam flanges, were discussed in detail to elucidate the mechanical performance interaction between strong-axis and weak-axis connections. Results showed that there is obvious interaction between two beams in strong-axis or weak-axis connections, and the plane exterior connections has better hysteresis performance. While the interaction of strong-axis connection and weak-axis connection slightly affected each other’s hysteresis performance, and thus the coupling effect of spatial connections is not evident.

Keywords: steel frame; spatial connection; seismic performance

DOI: 10.18057/ICASS2020.P.125

1 INTRODUCTION

Steel special moment frames (SMFs) are extensively used in middle- and high-rise buildings because this systems is considered to have excellent ductility. A typical connection used in SMFs is the web-bolted flange-welded connection as it is simple to fabricate and economical, in which a complete joint penetration (CJP) groove weld was used to connect the beam flange to the column in the field, and the beam webs are field bolted to a shear tab which is already welded to the column.

Unfortunately, brittle fracture in or around the groove weld between the beam flanges (primarily bottom flange) and the column flange was observed in more than 150 steel SMRF buildings after the January 17, 1994 Northridge earthquake. Causes for the poor performance of these welded connections of Pre-Northridge were mainly conjectured as the poor workmanship leading to weld defects, and poor detailing connections producing stress concentrations at the beam flange welds [1-3].

To avoid such unexpected failure, the seismic performance of various moment connections has been extensively studied since the Northridge earthquake, including various alternatives of reduced beam section (RBS) connections [4-8] and reinforced connections [9-13] to
Y. Xu et al.

improve the seismic performance of moment connections through forcing the plastic hinge a small distance away from the column face.

Nevertheless, the majority of past studies were conducted on the plane beam-column connections, mostly on strong-axis moment connections, leading to various improved connection alternatives are only prequalified for plane strong-axis connections. The actual seismic load direction may be along any direction, and thus the beam-column connections may be subjected to two-directional bending moments and shear forces transmitted by the strong-axis and weak-axis connections.

Bu et al. [14-15] reported an experimental study about the spatial semi-rigid beam-column connections with T-stub, and the results showed that the mechanical characteristics under spatial loads were different from plane semi-rigid connections. Hu et al. [16] conducted an experimental study for three types of prefabricated steel beam-column connections, and the comparison results showed that the 3D loading configuration changed the strain distribution in the strong-axis connection and made continuity plates more critical than beam flanges. Experimental results of spatial end-plate bolted connections [17-19] showed that the loads in weak-axis connections could increase the stiffness of the strong-axis connections, and spatial loads have some influence on the structural behavior of strong-axis or weak-axis connections.

The beam-column connections are basically in the form of spatial connections in practical engineering, experimental and theoretical study is still needed for the spatial beam-column connections. The primary objective of this research described herein is to examine the following two issues: (1) the structural behavior of spatial beam-column connections; (2) the effect of two strong-axis connections or two weak-axis connections; and (3) the mutual effect of strong-axis connections and weak-axis connections.

The structure of the paper is as follows. First, the validity of the finite element modeling method in this paper is verified by comparing with the experimental results. Second, the interaction of two strong-axis connections or two weak-axis connection in plane beam-column connections was discussed. Third, the interaction between the strong-axis connection and weak-axis connection in spatial beam-column connections was discussed. Finally, conclusions and future developments are drawn.

2 VALIDITY OF FINITE ELEMENT METHOD

Due to the scarcity of experimental study for spatial beam-column connections, such as the complex process and large expense, the numerical simulations are being increasingly used to analyze the structural behavior. The ABAQUS software was selected to conduct the cyclic performance of spatial connections, as it is a comprehensive software with many element types and material models allow for the modeling of engineering structures. The experimental results of specimen Ⅱ reported by Hu et al. [16] were used as a reference to validate the accuracy of the finite element methods (FEM) in this study through comparing the failure mode and moment versus rotation hysteretic loops of test and FEM.

2.1 Modeling techniques

Specimen Ⅱ reported by Hu et al. [16] consisted of a 2430 mm height H700×500×20×35 column, a 2750 mm long H400×400×13×21 beam in strong-axis connection, and a 2450 mm long H400×400×13×21 beam in weak-axis connection. And the specimen Ⅱ was prefabricated with beams and column as a whole. The axial load was 2000 kN applied firstly on the top pf the column and remained constant during the test. And then the asymmetric cyclic loads were imposed on the ends of the beams through displacement control, as shown in Figure 1.
The finite element model of specimen II was shown in Figure 2. The steel profiles were modeled with 3D solid elements, and eight-node solid nonconforming elements (C3D8I) were used for all steel components. Different mesh sizes were used for this model, and a fine mesh was applied at the regions near the beam-column connection region, and a coarser mesh was used elsewhere, as displayed in Figure 2. The binding constraints were applied for the surface of the beams and the column, and the welds were not modeled explicitly. The boundary conditions were the same as in the test, with the x, y, and z directions restricted at the base of the column, and the x and y directions restricted at the top of the column, and also the lateral restraint was applied for the beams.

The plasticity model was based on the von Mises yielding criteria with the associated flow rule. The material property of steel profiles was set as multi-linear true stress-strain relationship based on the tensile coupon test results reported by Hu et al. [16]. The yield strength was 292.3, 273.4 and 349.7 MPa for the beam, column web, and column flange respectively, with the corresponding yield strain was 0.00147, 0.00134 and 0.00534. The ultimate strength was 449.0, 439.2 and 541.1 MPa for the beam, column web, and column flange respectively, with the corresponding yield strain was 0.20173, 0.19103 and 0.12727. Both material and geometric nonlinearities were considered in the FEM.

2.2 Verification of the created model

The moment ratio \((M/M_p)\) versus story drift angle \((\theta)\) hysteretic responses of the subassemblies extracted from the test are compared with that of the numerical analysis, as depicted in Figure 3. The ordinate is the test moment \(M\) normalized by the calculated full plastic moment \(M_p\) of the steel beam, where \(M\) is the bending moment at the column face, calculated as the beam end load multiplied by the distance between the loading point and the column face, and \(M_p\) is the full plastic moment, calculated as the plastic section modulus of the connected beam multiplied by the measured beam yield strength. The abscissa is the story drift angle \((\theta)\) calculated as the loading displacement divided by the distance between the loading point and the column centerline.

One can observe from Figure 3 that the initial rotational stiffness, calculated as the slope of the elastic unloading curve, of FEM and test matched well and the curves showed the same trend at the plastic stage. The maximum load in the FEM was lower than that of the test specimen, similar with analytical results simulated by Hu et al. [16]. This was probably due to the following two issues: (1) the local high residual stresses in the weld fusion zone, which was not considered in the FEM; (2) the boundary conditions in the FEM were idealized, while the boundary conditions in the test or in the actual engineering were semi-rigidity in a certain degree. It is clear that the maximum value of \(M/M_p\) was greater than 1.0, which was because of the strain hardening effect of the connection components. The hysteretic curves in the FEM
and test both showed stable and reliable cyclic response. The hysteric curves in the FEM was plumper than that of test, which was attributed to the crack of fillet welds in the test.

Figure 4 presents the local behavior of FEM and test. It is observed that beam in weak-axis connection experienced local buckling in the beam flanges and web. The numerical results showed good agreement with the test results in deformation configuration.

Overall, the results of FEM satisfactorily represented the spatial connection behavior. And then, the finite element methods were used to better understand the traditional spatial beam-column connections in steel frame.

3 COMPARATIVE ANALYSIS OF CONNECTIONS IN DIFFERENT LOCATIONS

To better understand the structural behavior of spatial beam-column connections in steel frame, a total of 7 models were created, including beam-column connections in different locations, as shown in Table 1. 7 connection subassemblies were designated as: (1) PESC, plane exterior strong-axis connection; (2) PEWC, plane exterior weak-axis connection; (3) PISC, plane interior strong-axis connection; (4) PIWC, plane interior weak-axis connection; (5) SCC, spatial corner connection; (6) SEC, spatial exterior connection; (3) SIC, spatial interior connection. The traditional welded rigid connection was used in these models.

Modeling methods, geometry of beam and column, boundary conditions, and loading protocol for the all connections were the same as described for specimen II. The mesh generation of model SIC was shown in Figure 5 for example. The moment ratio (M/M_p) versus story drift angle (θ) hysteretic responses, and the triaxiality index (TI), a measure of triaxial state of stress, was selected to evaluate the mechanical behavior and the local stress concentration and strain demand, which could be obtained according to Kim et al. [20].
Table 1: Connection forms.

<table>
<thead>
<tr>
<th>Model number</th>
<th>PESC</th>
<th>PEWC</th>
<th>PISC</th>
<th>PIWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection form</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model number</th>
<th>SCC</th>
<th>SEC</th>
<th>SIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection form</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1 Plane beam-column connections

Moment ratio \((M/M_p)\) versus story drift angle \((\theta)\) hysteretic curves comparison of plane beam-column connections was illustrated in Figure 6. It is clear from the comparison that the cyclic performance of plane exterior connections and plane interior connections showed significant differences. No matter for plane strong-axis connections or plane weak-axis connections, the \(M/M_p-\theta\) hysteretic loops of the plane interior connections exhibited obvious pinching effect, and thus the plane exterior connections dissipated larger amounts of energy than that of the plane interior connections, indicating that there is obvious interaction between two beams in strong-axis or weak-axis connections.

![Graph](image8.png)
(a) Plane strong-axis connection

![Graph](image9.png)
(b) Plane weak-axis connection

Figure 6: \(M/M_p-\theta\) hysteretic curves comparison of plane beam-column connections.
Figure 7 plotted the equivalent plastic strain (PEEQ) comparison of plane beam-column connections at the moment of 5 times of yield displacement. One can observe that the failure mode of plane exterior connections was obviously different from that of plane interior connections. For plane exterior connections, the deformation concentrated on the beams near the beam-column interface, while the deformation concentrated on the panel zone for interior connections. It is clear from the comparison of Figures 7b and 7d, the deformation of panel zone of model PISC was much obvious than that of PIWC, which was attributed to the fact that the panel zone of weak-axis connections has two column flanges, much stiffer than the column web, considered as the panel zone of strong-axis connections.

![Figure 7: Equivalent plastic strain (PEEQ) comparison of plane beam-column connections.](image)

3.2 Spatial beam-column connections

Figure 8 shows the moment ratio (M/M_p) versus story drift angle (θ) hysteretic curves for plane connection and spatial corner connections. “-S” in Figure 8 denoted the strong-axis connection in spatial connections, and “-W” denoted the weak-axis connection in spatial connections. As illustrated in Figure 8, plane exterior connection and spatial corner connection showed a comparable cyclic performance, indicating that interaction of strong-axis connection and weak-axis connection slightly affected the connection behavior.

M/M_p-θ hysteretic curves of spatial beam-column connections was provided in Figure 9. By comparing the hysteretic curves, we can observe that there seems to be nearly no interaction between the strong-axis connections and weak-axis connections, and there was significant interaction for two strong-axis connections or two weak-axis connections.

Figure 10 plotted the TI comparison along the width of the beam flange in the beam-column interface at the moment of 5 times of yield displacement. According to Kim et al. [20], TI values between -0.75 and -1.5 can cause reductions in the rupture strain of metals. It is observed from Figure 10a that the TI value of the plane strong-axis connection was much smaller than that of the spatial connections, and less than -0.75, indicating that the beam-column welds in plane connections seems to be more prone to fracture. The change regularity for weak-axis connection as shown in Figure 10b was not obvious, and the minimum TI value was slight larger than -0.75.

![Figure 8: M/M_p-θ hysteretic curves comparison of plane connection and spatial corner connections.](image)
4 CONCLUSION

This study aims to better understand the structural behavior of spatial beam-column connections in steel frame. Finite element analysis was conducted preliminary for beam-column connections at different locations. Major observations obtained from this study are summarized as follows. Extrapolation of the below conclusions to a substantial different size or configuration should be undertaken with care.

1. The results of FEM satisfactorily represented the spatial connection behavior, indicating the finite element methods described in this paper is effective.

2. There is obvious interaction between two beams in strong-axis or weak-axis connections, and the plane exterior connections has better hysteresis performance. The conclusion resulted from the experiments or finite element analysis of plane exterior connections does not apply to other connection forms.

3. The interaction of strong-axis connection and weak-axis connection slightly affected the connection behavior. The coupling effect of spatial connections might can be ignored.

4. For plane exterior connections, the deformation concentrated on the beams near the beam-column interface, while the deformation concentrated on the panel zone for interior connections.

5. Further research is needed to address the spatial coupling effect for beam-column connections with various connection details to different sizes of beams and columns.

ACKNOWLEDGEMENTS

The authors would like to thank the financial support provided by Natural Science Basic Research Program of Shaanxi (Program No. 2022JM-221) and Western prefabricated building
industrialization Collaborative Innovation Center Program (Program No. N202207) for the financial support.

REFERENCES

These proceedings contain the papers at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation - joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Structure Systems, Composite, Connections, Design & Analysis, Direct Analysis, New Material, Fatigue, Cold-formed Steel, Intelligent Construction, Seismic Resistance, Green Construction, Corrosion, Fracture, Collapse, Fire, High-Strength Steel, Stability, Stainless Steel, Testing & Monitoring, Impact and Protection. The papers presented in these proceedings come from a wide range of countries/regions and will be a great reference source.

Volume I:
- Keynotes Lectures
- Assembled Structure
- Bridge
- Cold-Formed
- Composite
- Connections
- Corrosion, Fracture & Collapse
- Design & Analysis
- Direct Analysis
- Fatigue

Volume II:
- Fire
- High-Strength Steel
- Impact and Protection
- Intelligent Construction
- New Materials
- Seismic Resistance
- Stability
- Stainless Steel
- Structure Systems
- Testing & Monitoring